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We consider two bidimensional classical Ising models, coupled by a weak
interaction bilinear in the energy densities of the two systems; the model con-
tains, as limiting cases, the Ashkin–Teller and the Eight-vertex models for
certain values of their parameters. We write the energy–energy correlations and
the specific heat as Grassman integrals formally describing Dirac 1+1 dimen-
sional interacting massive fermions on a lattice, and an expansion based on
Renormalization Group is written for them, convergent up to temperatures very
close to the critical temperature for small coupling. The asymptotic behaviour is
determined by critical indices which are continuous functions of the coupling.

KEY WORDS: Coupled Ising models; non-universality; renormalization group;
fermions; critical indices.

1. INTRODUCTION AND MAIN RESULTS

1.1. Motivations

It is well known that the partition function and many correlations of the
d=2 classical Ising model can be written as Grassman integrals formally
describing a system of d=1+1 free fermions, see refs. 1–6. This mapping
of the Ising model in terms of a fermionic theory is quite useful; as the
corresponding action is quadratic in the Grassman variables, it can be
diagonalized by a Bogoliubov transformation so that the partition function
and many observables can be exactly computed. However, even a slight
perturbation of the Ising model makes the corresponding fermionic action



non-quadratic. The relationship between spin Ising-like models and inter-
acting fermionic models is deeply investigated in the literature; it is for
instance claimed that models of coupled Ising models with an interaction
quartic in the spins, like the Eight-vertex model, are in the same class of
universality of models of interacting d=1+1 fermions in the continuum,
like the massive Thirring model or the massive Luttinger model, see, for
instance, refs. 7–9. This relationship is however found under many
approximations. In this paper we consider two Ising models coupled by a
general interaction bilinear in the spin densities; the model contains as par-
ticular cases the Ashkin–Teller and Eight-vertex model for certain values of
their parameters. We clarify the relation between this general spin model
and systems of interacting fermions by writing the partition function and
some correlations as Grassman integrals with a formal action resembling
but not coinciding with the action of the massive Thirring or Luttinger
model; the main difference (in addition to the fact that the formal action
describes fermions in a lattice, not in the continuum) is that it does not
verify some special symmetries (like invariance under local Gauge trans-
formations) which are generally verified in models of interacting fermions
and which play an important role in their analysis. The main interest in this
representation in terms of Grassman integrals is that we can apply the
Renormalization Group techniques developed for interacting fermions (see,
for instance, refs. 10 or 11) for writing a convergent perturbative expansion
for the partition function and some correlations of the spin model we are
considering. A naive power series expansion in the coupling is not expected
to be convergent close to the critical temperature (the free and interacting
model are not analytically close) and one needs a resummed or renormalized
expansion which is provided by Renormalization Group.

1.2. Spin Systems with Quartic Interactions

We consider two Ising models coupled via a four spin interaction bili-
near in the energy densities of the two sublattices. Given LM ¥ Z2 a square
lattice with side M and periodic boundary condition, we call x=(x, x0)
a site of LM. If s(1)

x =± 1 and s(2)
x =± 1, we write the following Hamiltonian

HL(s (1), s (2))=HI(s (1))+HI(s (2))+V(s (1), s (2)) (1.1)

where, if a=1, 2

HI(s (a))=− C
M

x, x0=1
[J(a)

1 s (a)
x, x0

s (a)
x+1, x0

+J (a)
2 s (a)

x, x0
s (a)

x, x0+1] (1.2)
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V(s (1), s (2))=− C
M

x, x0=1

3la[s (1)
x, x0

s (1)
x+1, x0

s (2)
x, x0

s (2)
x+1, x0

+s (1)
x, x0

s (1)
x, x0+1s (2)

x, x0
s (2)

x, x0+1]

+lb[s (1)
x, x0

s (1)
x+1, x0

s (2)
x, x0

s (2)
x, x0+1+s (1)

x, x0
s (1)

x, x0+1s (2)
x − 1, x0+1s (2)

x, x0+1]

+lc C
a=1, 2

[s (a)
x, x0

s (a)
x+1, x0

s (a)
x, x0

s (a)
x, x0+1+s (a)

x, x0
s (a)

x+1, x0
s (a)

x+1, x0 − 1s (a)
x+1, x0

]4

(1.3)

The above Hamiltonian can be a model for a number of physical
problems; for instance two magnetic spin planes coupled by an interplanar
interaction quartic in the spins (in this interpretation s (1) and s (2) are the
spin of the first or second plane). Moreover it contains, as limiting cases,
two well known models, the Ashkin–Teller and the Eight-vertex model.

1.3. The Ashkin–Teller Model

Ashkin and Teller introduced their model as a generalization of the
Ising model to a four state system. Each site x is occupied by one of the
four kinds of atom, said A, B, C, D, and two neighboring atoms interact
with an energy e0 for AA, BB, CC, DD; e1 for AB, CD, e2 for AC, BD, e3

for AD, BC. It is quite easy to express this model in terms of Ising spins,
see ref. 12. One associates to each site of the lattice two spins s (1)

x and s (2)
x ,

see Fig. 1; then s (1)
x , s (2)

x =(+, +) if there is an A atom at site x, (+, −) if
there is an atom B, (−, +) if there is an atom C and (−, −) if there is an
atom D. Then the hamiltonian is given by

HL(s (1), s (2))

=HI(s (1))+HI(s (2))

− Jœ C
M

x, x0=1
[s (2)

x, x0
s (2)

x, x0+1s (1)
x, x0

s (1)
x, x0+1+s (2)

x, x0
s (2)

x+1, x0
s (1)

x, x0
s (1)

x+1, x0
] − J0

(1.4)

where HI(s (a)) is given by (1.2) with J (a)
1 =J(a)

2 =J (a) and

− J (1)=(e0+e1 − e2 − e3)/4 − J (2)=(e0+e2 − e3 − e1)/4

− Jœ=(e0+e3 − e1 − e2)/4 − J0=(e0+e1+e2+e3)/4
(1.5)

The model is not soluble, except in some particular case, and we refer to
Chapt. 12 of ref. 13, and references therein for a review of the main results
about it; it is of the form (1.1) with b=c=0.
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x,x0+1 

x,x0                  x+1,x0 

Fig. 1. The spin representation of the Ashkin–Teller model; the dotted lines represent the
Ising interactions, the solid lines the quartic interactions.

1.4. The Eight-Vertex Model

In such model one associates to each site of a square lattice a vertex
with four arrows with different orientations, see Chapt. 10 of ref. 13.
Among the sixteen possibilities, only eight kind of vertices are allowed, and
an energy ei, i=1,..., 8, is associated to each of them. It was solved in
ref. 13 if e1=e2, e3=e4, e5=e6, e7=e8 and for suitable values of the ei it
reduces to the ice-model, solved in ref. 14. Such models are called vertex
models and were introduced to describe crystal with hydrogen bonding. As
explained in refs. 13 or 15 they can be written in terms of the following
Hamiltonian, see Fig. 2

HL(s (1), s (2))=− C
x, x0

[Jsx, x0+1sx+1, x0
+JŒsx, x0

sx+1, x0+1

+Jœsx, x0
sx+1, x0+1sx, x0+1sx+1, x0

] (1.6)

 

x,x0+1                x+1,x0+1 

x,x0                x+1,x0 

Fig. 2. The spin representation of the Eight-vertex model; the solid points have x0+x even
and the void points, odd; the solid lines represent the quartic interaction.
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with

e1=e2=−J − JŒ − Jœ e3=e4=J+JŒ − Jœ

e5=e6=JŒ − J+Jœ e7=e8=−JŒ+J+Jœ
(1.7)

If Jœ=0 the above hamiltonian decouples in the hamiltonian of two Ising
models, involving spins located in two sublattices, one with x+x0 equal to
an even number and the other to an odd number. Each site of the sublat-
tices is in the center of the unit square of the other one. Calling s (1) and s (2)

the spin located in the first or the second sublattice, relabeling the spins
and performing a rotation of p

4 the hamiltonian can be written as, see Fig. 3

HL(s (1), s (2))

=HI(s (1))+HI(s (2))

− Jœ C
M

x, x0=1
[s (2)

x, x0
s (2)

x, x0+1s (1)
x, x0

s (1)
x+1, x0

+s (1)
x, x0

s (1)
x, x0+1s (2)

x − 1, x0+1s (2)
x, x0+1]

(1.8)

where

HI(s (a))=− C
M

x, x0=1
J[s (a)

x, x0
s (a)

x+1, x0
+s (a)

x, x0
s (a)

x, x0+1]

which is again of the form (1.1) with a=c=0 (of course this identification
is exact if boundary conditions in the Eight-vertex model are chosen
properly).

  x,x0+1     

 

x-1,x0+1                 x,x0+1 

x,x0                      x+1,x0 

x,x0 

Fig. 3. The eight-vertex model in the rotated frame, with spins relabelled; the solid lines
represent the quartic interaction.
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1.5. Main Results

We will consider in this paper the case

J (2)
1 =J (1)

2 =J(2)
1 =J (2)

2 =J (1.9)

If l=0 the problem reduces to the Ising model whose critical temperature
is given by tanh bcJ0=`2 − 1 — tc where J — bJ0 and b−1 is the tempera-
ture. The interaction changes in general the value of the critical tempera-
ture by terms O(l), and it is instead technically convenient to fix its value
still in correspondence of tc=`2 − 1, by choosing properly the molecular
energy parameter J as a function of l; in this way the critical temperature
of the system with l=0 and l ] 0 is the same. We consider then the model
(1.1) with Jr replacing J, and we will choose Jr=J+O(l) so that the criti-
cal temperature is in correspondence tc=`2 − 1.

We define

OO(x) O(y)PL=
1

ZL

C
s

(1)
x , s

(2)
x =± 1

x ¥ LM

O(x) O(y) e−HL(s
(1), s

(2)) (1.10)

where ZL=;
s

(1)
x , s

(2)
x =± 1

x ¥ LM

e−HL(s
(1), s

(2)) is the partition function, fl(J)=

lim |L| Q .

1
|L| log ZL is the free energy, “

2

“J2 fl(J) is the specific heat, and the
correlation function of the observable O(x) is

OO(x) O(y)PL, T=OO(x) O(y)PL −OO(x)PL OO(y)PL. (1.11)

In the Ising model close to the critical temperature “
2

“J2 f0(J) 4

C log |t − tc |−1 and for large distances |OO(x) O(y)PL, T | [ Ce − A |t − tc| |x − y|

|x − y|2 , with
A, C suitable constants.

We will prove the following theorem.

Theorem 1. Consider the hamiltonian (1.1), with Jr replacing J,
and assume that |a+b| > 0 and (1.9). There exist e > 0, a3 > 0, ā > 0
constants and a function n(l)=tanh Jr − tanh J such that, for |l| [ e and
ā \ |t − tc | \ e− 1

a3l2, the energy–energy correlation verifies

lim
|L| Q .

Os (a)
x s (a)

xŒ s (a)
y s (a)

yŒ PL, T=W (a), a(x, y)+W (a), b(x, y)+W (a), c(x, y)
(1.12)
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where x, xŒ and y, yŒ are nearest neighbor pairs respectively and, for any
integer positive N

|W (a) a(x, y)| [
1

|x − y|2+g1

CN

1+(D |x − y|)N

|W (a), b(x, y)| [
1

|x − y|2+g3

CN

1+(D |x − y|)N

|W (a), c(x, y)| [
1

|x − y|2+y

CN

1+(D |x − y|)N

(1.13)

where CN, y are positive constants, D=|t − tc |1+g2, and n(l)=O(l),

g1(l)=−a1l+O(l2) g2(l)=a2l+O(l2) g3(l)=a1l+O(l2)
(1.14)

with a1 > 0, a2 > 0 constants. If 1 [ |x| [ D−1

W (a) a(x, y)=
1+f(a), a

l (x, y)
Z̃2

0(x2
0+x2)1+g1

W (a) b(x, y)=
1+f(a), b

l (x, y)
Z̃2

0(x2
0+x2)1+g3

(1.15)

and |W (a), c(x, y)| [ C
|x − y|2+y , where Z̃0 > 0 is a constant and fl(x, y) are

smooth bounded O(l) functions. Finally the specific heat verifies

C1
: 1
g1

[1 − |D|2g1]+
1
g3

[1 − |D|2g3] : [ : “
2

“J2 fl(J) :

[ C2
: 1
g1

[1 − |D|2g1]+
1
g3

[1 − |D|2g3] :

(1.16)

where C1, C2 are positive constants.

1.6. Remarks

The above theorem describes the behaviour of the energy–energy cor-
relation and the specific heat near the critical temperature of Ising models
in two dimensions weakly coupled by a four spin interaction. One can dis-
tinguish two different regimes in the asymptotic behaviour of the energy–
energy correlation function, discriminated by an intrinsic correlation length
t of order |t − tc |−1 − g2 with g2=O(l). If 1 ° |x − y| ° t, the bounds for
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the correlation function is power-like (with a l dependent exponent) while
if t ° |x|, there is a faster than any power decay with rate of order t−1. In
the first region we can obtain the exact large distance asymptotic behaviour
of the energy–energy correlation function, see (1.15), while in the second
region only an upper bound is obtained. The logarithmic behaviour of the
specific heat in the Ising model getting closer and closer to the critical
temperature is changed by the four spin interaction in a power law, at least
up to temperatures very close to tc for small four spin coupling. A bound
like C1 log(|t − tc |−1) [ | “

2

“J2 fl(J)| [ C2 log(|t − tc |−1), for some positive l-in-
dependent constants C1 and C2, which would be true if the model would be
in the same universality class as the Ising model, cannot be true by (1.16) at
least for |t − tc | \ e− 1

a3l2.
In the particular case a=c=0 our model reduces to the Eight-vertex

model, which is exactly soluble; (13) our results agree with the informations
obtained by the exact solution, in which non universal critical behaviour is
found and it is believed that the specific heat diverges with a power law. (15)

In the case a=b=0 our model reduces to a model of two non interacting
Ising models with nearest neighbor and four spin interaction within each
copy, which was studied in ref. 16 (which is indeed the first paper in which
fermionic RG methods were applied to classical Ising-like models, and
it is a major source of inspiration for the present work). In this case
C1 log(|t − tc |−1) [ | “

2

“J2 fl(J)| [ C2 log(|t − tc |−1) (up to t=tc) so that uni-
versality indeed holds

1.7. Sketch of the Proof

The proof of the theorem is based on Grassmann variables combined
with renormalization group techniques. In Section 2 we briefly recall the
well known representation of the bidimensional Ising model in terms of
Grassmann variables, mainly due to refs. 1, 3–5 and recently rederived in a
more cohesive way in ref. 16. The partition function and the correlation
can be written in terms of Grassmann integrals with a quadratic action
which can be explicitly computed in terms of Pfaffians. The exact solva-
bility of the Ising model is hence related to the fact that it can be expressed
in terms of free fermions, as it was first noted in ref. 2. In the Grassmann
representation there are four independent Grassmann variables associated
to each point of the lattice, two with a large O(1) mass and the other two
with a continuously vanishing mass at the critical temperature. In Section 2
we show that two Ising models weakly coupled by four spin interactions,
with hamiltonian (1.1), can be also written in terms of Grassmannn
integrals, with the difference that there are now eight independent Grass-
mannn variables (four for each Ising model) and that the formal action
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contains now terms which are quartic in the fields, corresponding to a short
range interaction among fermions. By performing a suitable linear trans-
formation in the Grassmann variables one obtains that in the new variables
the quadratic part of the action strongly resembles the action of two
massive Dirac fermions in d=1+1 dimensions (it would coincide with that
if the continuum limit would be taken); again one Dirac fermion has a
large O(1) mass and the other is vanishing at tc, and we call them heavy
and light fermions. We are essentially exploiting in this transformation the
relation Pf 2 A=det A.

In Section 3 we integrate out the heavy fields in the Grassmann
integral for the partition function, so obtaining a Grassmann integral
whose formal action contains monomials of every degree in the light Dirac
fermions. In order to do this we use the representation in ref. 17 of fer-
mionic truncated expectations and Gram-Hadamard inequality.

In Section 4 we apply renormalization group methods to integrate the
light fermions, which in a sense are the critical modes. We will use a suit-
able modification of the multiscale expansion used in ref. 18 (see also
refs. 10 or 11 for a general introduction to the formalism) to study the cor-
relation functions of the Heisemberg–Ising XYZ chain; the close relation-
ship between Ising models with quartic coupling and the XYZ chain has
been pointed out many times in the literature, see, for instance, ref. 13.
A power counting analysis says that the terms bilinear in the Grassmann
variables are relevant in a RG sense, while the quartic terms, or the bilinear
with an extra derivative are marginal. One can understand here why uni-
versality is still present if one considers decoupled Ising models with
nearest neighbor and four spin interaction within each copy, and why on
the contrary it is lost if the Ising models are coupled. In the first case
(which is the one treated in ref. 19) one can easily check that the local part
of the quartic terms is vanishing, so the effective interaction is indeed
irrelevant in the RG sense. On the other hand in the second case the quartic
interactions is truly marginal and this produces a line of fixed points for the
RG transformation (instead of the gaussian fixed point as in the previous
case) continuously depending on the coupling l. We decompose the
Grassmann integration P(dk) as a product of independent Grassmann
integrations P(dk (h)), with covariance with non vanishing support only for
momenta with modulus between ch − 1 and ch+1, with c > 1 and h=0, −1,
−2, −3,... . We integrate each P(dk (h)) iteratively starting from P(dk (1))
obtaining a sequence of effective potentials V (h) describing the theory at
momentum scale ch; at each step new contributions to the mass and the
wave function renormalization are obtained which are included in the fer-
mionic integration; hence P(dk (h)) has a covariance with mass mh and wave
function renormalization Zh with a non trivial dependence on h, i.e.,
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mh 4 |t − tc | cg2h and Zh 4 cg4h, with g4=O(l2). The iteration stops as soon
as the mass mh becomes of order ch; we will call hg the last scale to be
integrated (of course hg

Q − . at the critical temperature t=tc). The
iterative procedure allows to write the effective potential V (h) as sum of
monomials in the Grassmann variables, with coefficients which are (con-
vergent) perturbative expansions in terms of a few running coupling con-
stant, lh, the effective coupling of the interaction between fermions, nh,
which takes into account the renormalization of the value of the critical
temperature, dh related to the renormalization of the fermionic velocity and
other couplings zi, w, h, z̃i, w, h which are the coefficients of quadratic terms in
the Grassmann fields with a derivated field. Despite there are many
similarities between our Grassmann integrals and the one describing rela-
tivistic fermions, there is a crucial difference; the interaction term in the
action is not invariant under gauge transformation, hence terms which were
absent in the free action can be generated in the RG iterations. One can
check that indeed peculiar symmetries of the model (1.2) ensure that there
is only one relevant term quadratic in the fermions (if there were more one
gets in troubles, as there is only one free parameter in the hamiltonian). On
the other hand we cannot exclude the generation of marginal quadratic
terms which were absent in the free action; they are the terms zi, w, h, z̃i, w, h.
At the end the result of this iterative integration is an expansion for the
partition function in terms of the running coupling constants which is
proved in Section 4 to be convergent provided that the running coupling
constants are small for any h.

In Section 5 we prove indeed that it is possible to choose the counter-
term n as a function of l so that the running coupling constants are indeed
small; the condition on the temperature |t − tc | \ e− 1

a3l2 is used to control the
flow of the running coupling constants, and some cancellations at the lower
order in our expansion are also used to be as close as possible to the critical
temperature.

Finally in Section 6 we define an expansion for the correlation func-
tions and the specific heat; it is similar to the one for the partition function,
with the main difference that one has to introduce new fields associated to
the external fields. There are additional marginal terms in RG expansion to
which other renormalization constants, with a non trivial behaviour in h, are
associated, i.e., Z (1)

h 4 cg1h and Z (2)
h 4 cg3h. By such expansion the state-

ments in the theorem are derived.
Among interesting open problems there is the reaching of the critical

temperature; surely one has to exploit suitable cancellations at every order
of the expansion for lh, dh, as in the theory of d=1 interacting Fermi
systems, see, for instance, refs. 18 and 20, but at the moment the main dif-
ficulty is in the flow of the couplings zi, w, h and z̃i, w, h. Another interesting
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problem would be the analysis of the spin-spin correlation function whose
expression in terms of Grassmann variables is unfortunately quite compli-
cated and not easy to manage. A similar problem appears in considering
two Ising models coupled by a weak interaction bilinear in the spins; in
such a case the interaction in terms of Grassmann variables has a quite
complex expression and it seems difficult to study. On the other hand, for
large coupling, such bilinear interaction should be irrelevant and univer-
sality should hold. Finally it should be interesting to study the case of two
coupled Ising models at different temperatures or the case of four coupled
Ising models; in this last case interacting spinning d=1 fermions appear in
the fermionic description, which are known to have a behaviour quite dif-
ferent from the spinless one (like in the d=1 Hubbard model).

2. FERMIONIC REPRESENTATION

2.1. Grassmann Integrals

If l=0 the hamiltonian (1.1) is given by the sum of two independent
Ising model hamiltonians, and the partition function is given by Z (1)

I Z (2)
I

where

Z (a)
I = C

s
(a)
x =± 1
x ¥ LM

e−HI(s
(a)). (2.1)

It is well known that such partition function can be written in terms
of Grassmann integrals, so we recall first their definition. Grassmann
variables ga, a=1, 2,..., 2n, n even, are anticommuting variables satisfying

{ga, gaŒ}=0 g2
a=0 (2.2)

The Grassmann integration > dga is a linear operation defined as

F dga=0 F dga ga=1 (2.3)

It holds that

F D
a

dga e
1
2

; a, b gaAa, bgb=Pf A (2.4)
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where A is an even antisymmetric 2n-matrix and Pf A denotes the Pfaffian.
It holds

F dg1 · · · dg2n exp
1
2

C
a, b

gaAa, bgb

=F dg2n · · · dg1 D
a < b

(1+Aa, bgagb)

=
1

2nn!
C
p

(−1)p Ap1, p2
Ap3, p4

· · · Ap2n − 1, p2n
— Pf A (2.5)

where the sum is over all the permutations. We can consider another set of
Grassmann variables g+

a , a=1,..., 2n, and

F D
a

dga D
a

dg+
a exp 5C

a, b

gaBa, bg+
b
6=Det B (2.6)

The well known relation (Pf A)2=det A can be quite easily deduced by the
above Grassmann integrals; it can be written as

F D
a

dga dg+
a egaAa, bg

+
b =F D

a

dg (1)
a e

1
2

g
(1)
a Aa, bg

(1)
b F D

a

dg (2)
a e

1
2

g
(2)
a Aa, bg

(2)
b (2.7)

which can be proved by the change of variables

g+
a =

1

`2
(g (1)

a +ig (2)
a ) ga=

1

`2
(g (1)

a − ig (2)
a ) (2.8)

in > dga dg+
a egaAa, bg

+
b . Then dga dg+

a =idg (1)
a dg (2)

a and

gaAa, bg+
b =1

2 g (1)
a Aa, bg (1)

b +1
2 g (2)

a Aa, bg (2)
b (2.9)

as

g (1)
a Aa, bg (2)

b − g (2)
a Aa, bg (1)

b =g (1)
a Aa, bg (2)

b − g (1)
b Ab, ag (2)

a =0 (2.10)

2.2. The Fermionic Representation of the Ising Model

It is well known that the partition function can be written as a
Grassmann integral. It is proved in refs. 1, 3–5 that

Z (a)
I =(cosh Jr)B 2S 1

2 F D
x ¥ LM

dH(a)
x dH̄ (a)

x dV(a)
x dV̄ (a)

x

× [ − eS+, ++eS+, −+eS− , ++eS− , −] (2.11)
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where B is the total number of bonds and S is the total number of sites,

S (a)
e, eŒ

= C
x ¥ LM

tanh Jr[H̄ (a)
x, x0

H (a)
x+1, x0

+V̄ (a)
x, x0

V (a)
x, x0+1]

+ C
x ¥ LM

[H̄ (a)
x, x0

H (a)
x, x0

+V̄ (a)
x, x0

V (a)
x, x0

+V̄ (a)
x, x0

H̄ (a)
x, x0

+V (a)
x, x0

H̄ (a)
x, x0

+H(a)
x, x0

V̄ (a)
x, x0

+V (a)
x, x0

H (a)
x, x0

] (2.12)

and H (a)
x , H̄ (a)

x , V (a)
x , V̄ (a)

x are Grassmann variables such that

H̄ (a)
x, x0+M=eH̄ (a)

x, x0
H̄ (a)

x+M, x0
=eŒH̄ (a)

x, x0

H (a)
x, x0+M=eH (a)

x, x0
H (a)

x+M, x0
=eŒH (a)

x, x0

(2.13)

and identical relations hold for the variables V (a), V̄ (a). The Grassmann
integration > <x dH(a)

x dH̄ (a)
x is defined as the linear functional on the

Grassmannian algebra, such that, given a monomial Q(H(a), H̄ (a)) in
the variables H (a)

x , H̄ (a)
x , x ¥ LM, its value is 0, except in the case

Q(H(a), H̄ (a))=<x H (a)
x H̄ (a)

x , up to a permutation of the variables. In this
case the value of the functional is determined, by using the anticommuting
properties of the variables, by the condition

F 5 D
x ¥ LM

dH̄ (a)
x dH(a)

x
6 D

x ¥ LM

H (a)
x H̄ (a)

x =1. (2.14)

In a similar way is defined the Grassmann integration for V (a), V̄ (a), just
exchanging H, H̄ with V, V̄. In order to prove (2.11) the starting point is
the high temperature expansion

Z (a)
I =(cosh Jr)B 2S C (tanh Jr) l (2.15)

where the sum is over all the closed polygons which may have points but
not sides in common, see Fig. 4. One then replaces the Ising lattice with
another lattice, called second lattice, in which each site is replaced by four
surroundings sites or terminals, see Fig. 5. If we associate V̄x with Nx, Vx

with Sx, H̄x with Ex and Hx with Wx, see Fig. 5, it is easy to verify, by the
rules of Grassmann integrations, that > eSe, eŒ can be represented as a sum
over polygon configurations over the second lattice. Such polygon config-
urations are defined such that each terminal must be coupled to another
terminal, Ex may be coupled to Wx+1, x0

; Nx0, x may be coupled Sx, x0+1;
Ex may be coupled to Nx, Wx, Sx; Nx may be coupled to Wx or Sx; Wx may
be coupled to Sx, and no other types of couplings are allowed. An example
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Fig. 4. Closed polygon in the high temperature expansion of the Ising model partition
function.

of polygon configuration in the second lattice is in Fig. 5. By a local identi-
fication of Ising configurations and configurations over the second lattice
(see Fig. 6), there is a correspondence between polygon configurations on
the Ising lattice and polygon configurations on the second lattice. The cor-
respondence is not one to one, as the configuration with zero lines in the
Ising model corresponds to three configurations in the second lattice.

N 

W                E             

S 

Fig. 5. The second lattice and its polygon configurations.
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                          =  

                                                             = 

                          =  

                          =  

Fig. 6. Local identification of Ising configurations and configurations over the second
lattice.

However the signs add so that the sum over polygon configurations in
the Ising lattice in (2.15) is exactly equal to the sum over polygon con-
figurations in (2.11); the proof is based on a subtle combinatorial analy-
sis first done in ref. 3. In order to ensure periodic boundary conditions,
one has to sum over four terms as in (2.11), as explained in ref. 4. We
write eS(a)

e, eŒ=eS(a), 0
e, eŒ eS(a), n

e, eŒ where S (a), 0
e, eŒ

is given by (2.12) with J replacing Jr

and

S (a), n
e, eŒ

=n C
x ¥ LM

[H̄ (a)
x, x0

H (a)
x+1, x0

+V̄ (a)
x, x0

V (a)
x, x0+1] (2.16)

If J is not constant but it depends on the bounds one obtains a similar
formula in which S (a), 0

e, eŒ
is given by

S (a), 0
e, eŒ

=C
x

[tanh J (a)
1; x, x0; x+1, x0

H̄ (a)
x, x0

H (a)
x+1, x0

+tanh J (a)
2; x, x0; x, x0+1V̄ (a)

x, x0
V (a)

x, x0+1]

+C
x

[H̄ (a)
x, x0

H (a)
x, x0

+V̄ (a)
x, x0

V (a)
x, x0

+V̄ (a)
x, x0

H̄ (a)
x, x0

+V(a)
x, x0

H̄ (a)
x, x0

+H(a)
x, x0

V̄ (a)
x, x0

+V(a)
x, x0

H (a)
x, x0

] (2.17)

and the factor (cosh J)B is replaced by <b cosh Jb, where the product is
over all the possible nearest neighbor bounds. We will call Z (a)

I (Jx, xŒ) the
Ising model partition function with non constant J.
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2.3. The Fermionic Representation of Coupled Ising Models

The partition function of (1.1) is

Z2I= C
s

(1)
x =± 1
x ¥ LM

C
s

(2)
x =± 1
x ¥ LM

e−HI(s
(1))e−HI(s

(2))e−V(s
(1), s

(2)) (2.18)

Let us consider first the essentially equivalent expression

Ẑ2I= C
s

(1)=± 1
x ¥ LM

C
s

(2)=± 1
x ¥ LM

e−HI(s
(1))e−HI(s

(2))

× D
x

[1+las (1)
x, x0

s (1)
x+1, x0

s (2)
x, x0

s (2)
x+1, x0

]

× D
x

[1+las (1)
x, x0

s (1)
x, x0+1s (2)

x, x0
s (2)

x, x0+1]

× D
x

[1+lbs (1)
x, x0

s (1)
x+1, x0

s (2)
x, x0

s (2)
x, x0+1]

× D
x

[1+lbs (1)
x, x0

s (1)
x, x0+1s (2)

x − 1, x0+1s (2)
x, x0+1]

× D
a

D
x

[1+lcs (a)
x, x0

s (a)
x+1, x0

s (a)
x, x0

s (a)
x, x0+1]

× D
a

D
x

[1+lcs (a)
x, x0

s (a)
x+1, x0

s (a)
x+1, x0 − 1s (a)

x+1, x0
)] (2.19)

Noting that

s (a)
x, x0

s (a)
x+1, x0

e−HI(s
(a))=

“

“J (a)
1; x, x0; x+1, x0

Z (a)
I (J (a)

x, xŒ)|{J(a)
x, xŒ}={J(a)} (2.20)

and from (2.17) this derivative gives an extra factor tanh J (a)+
sech2 J (a)H̄ (a)

x, x0
H (a)

x+1, x0
in (2.11). In the same way

s (a)
x, x0

s (a)
x, x0+1 e−HI(s

(a))=
“

“J (a)
2; x, x0; x, x0+1

Z (a)
I (J (a)

x, xŒ)|{J(a)
x, xŒ}={J(a)} (2.21)

and this derivative gives a factor tanh J (a)+sech2 J (a)V̄ (a)
x, x0

V (a)
x, x0+1. We can

write than, if d+, +=1 and d+, − =d−, +=d−, − =2

Ẑ2I= C
e

(1), eŒ(1)

(−1)de(1), eŒ
(1) C

e
(2), eŒ(2)

(−1)de(2), eŒ
(2) Ẑ e

(1), eŒ(1), e
(2), eŒ(2)

2I (2.22)

216 Mastropietro



where

Ẑ e
(1), eŒ(1), e

(2), eŒ(2)

2I =(cosh J)2B 22S 1
4

F D
2

a=1

5D
x

dH (a)
x dH̄ (a)

x dV(a)
x dV̄ (a)

x
6 eS(1)

e(1), eŒ
(1)eS(2)

e(2), eŒ
(2)

× D
x

[1+la(tanh J+sech2 JH̄ (1)
x, x0

H (1)
x+1, x0

)

× (tanh J+sech2 JH̄ (2)
x, x0

H (2)
x+1, x0

)]

× D
x

[1+la(tanh J+sech2 JV̄ (1)
x, x0

V (1)
x, x0+1)

× (tanh J+sech2 JV̄ (2)
x, x0

V (2)
x, x0+1)]

× D
x

[1+lb(tanh J+sech2 JH̄ (1)
x, x0

H (1)
x+1, x0

)

× (tanh J+sech2 JV̄ (2)
x, x0

V (2)
x, x0+1)]

× D
x

[1+lb(tanh J+sech2 JV̄ (1)
x, x0

V (1)
x, x0+1)

× (tanh J+sech2 JH̄ (2)
x − 1, x0+1H (2)

x, x0+1)]

× D
a

D
x

[1+lc(tanh J+sech2 JH̄ (a)
x, x0

H (a)
x+1, x0

)

× (tanh J+sech2 JV̄ (a)
x, x0

V (a)
x, x0+1)]

× D
a

D
x

[1+lc(tanh J+sech2 JH̄ (a)
x, x0

H (a)
x+1, x0

)

× (tanh J+sech2 JV̄ (a)
x+1, x0 − 1V (a)

x+1, x0
)] (2.23)

The above expression can be rewritten as

Ẑ e
(1), eŒ(1), e

(2), eŒ(2)

2I =(cosh J)2B 22S 1
4 F 5D

2

a=1
D

x
dH (a)

x dH̄ (a)
x dV (a)

x dV̄ (a)
x eS(a)

e(a), eŒ
(a)6 eV

(2.24)

with

V=Va+Vb+Vc (2.25)
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and, if fi=log(1+l[i] tanh2 J) and [i]=a, b, c

Va=C
x

[fa+l̃a[H̄ (1)
x, x0

H (1)
x+1, x0

+H̄ (2)
x, x0

H (2)
x+1, x0

]

+laH̄ (1)
x, x0

H (1)
x+1, x0

H̄ (2)
x H (2)

x+1, x0
]

+C
x

[fa+l̃a[V̄ (1)
x, x0

V (1)
x, x0+1+V̄ (2)

x, x0
V (2)

x, x0+1]

+laV̄ (1)
x V (1)

x, x0+1V̄ (2)
x, x0

V (2)
x, x0+1]

Vb=C
x

[fb+l̃b[H̄ (1)
x, x0

H (1)
x+1, x0

+V̄ (2)
x, x0

V (2)
x, x0+1]

+lbH̄ (1)
x, x0

H (1)
x+1, x0

V̄ (2)
x V (2)

x, x0+1]

+C
x

[fb+l̃b[V̄ (1)
x, x0

V (1)
x, x0+1+H̄ (2)

x − 1, x0+1H (2)
x, x0+1]

+lbV̄ (1)
x, x0

V (1)
x, x0+1H̄ (2)

x − 1, x0+1H (2)
x, x0+1]

Vc=C
x

C
a

[fc+l̃c[H̄ (a)
x, x0

H (a)
x+1, x0

+V̄ (a)
x, x0

V (a)
x, x0+1]

+lcH̄
(a)
x, x0

H (a)
x+1, x0

V̄ (a)
x V (a)

x, x0+1]

+C
x

C
a

[fc+l̃c[V̄ (a)
x+1, x0 − 1V (a)

x+1, x0
+H̄ (a)

x, x0
H (a)

x+1, x0
]

+lcV̄
(a)
x+1, x0 − 1V (a)

x+1, x0
H̄ (a)

x H (a)
x+1, x0

] (2.26)

It is easy in fact to verify that

efi+l̃ i[H̄(a)
x H(a)

x+1, x0
+V̄(a)

x V(a)
x, x0+1]+l iH̄

(a)
x H(a)

x+1, x0
V̄(b)

x V(b)
x, x0+1

={(1+l[i] tanh2 J)[1+l̃ i[H̄ (a)
x H (a)

x+1, x0
+V̄ (b)

x V (b)
x, x0+1]

+(l i+(l̃ i)2) H̄ (a)
x H (a)

x+1, x0
V̄ (b)

x V (b)
x, x0+1]} (2.27)

hence the equality between (2.23) and (2.24) holds with the identification

l̃ i(1+l[i]) tanh2 J)=l[i] sech2 J tanh J

(1+l[i] tanh2 J)(l i+(l̃ i)2)=l[i] sech4 J
(2.28)

An expression identical to (2.22), (2.23) holds for Z2I, the only difference
being that the relation with respect l̃ i, l i is slightly more complicated than
(2.28), but for small l again

l̃ i=[i] l(tanh J sech2 J+O(l)) l i=[i] l(sech4 J+O(l)) (2.29)
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2.4. Massive and Massless Fermions

We define

P (a)
e

(a), eŒ(a)(dHa, dV (a))=D
x

dH (a)
x dH̄ (a)

x dV(a)
x dV̄ (a)

x eS(a), 0
e(a), eŒ

(a) (2.30)

It is convenient to perform the following change of variables (6, 19)

H̄ (a)
x +iH(a)

x =e i p

4 k (a)
x − e i p

4q (a)
x H̄ (a)

x − iH (a)
x =e−i p

4 k̄ (a)
x − e−i p

4 q̄ (a)
x

V̄ (a)
x +iV(a)

x =k (a)
x +q (a)

x V̄ (a)
x − iV (a)

x =k̄ (a)
x +q̄ (a)

x

(2.31)

It holds that

P (a)
e

(a), eŒ(a)(dHa, dV (a))=P(a)
e

(a), eŒ(a)(dka) P (a)
e

(a), eŒ(a)(dqa) eQ(q
(a), k

(a)) (2.32)

where, if t=tanh J

Pa
e, eŒ

(dk (a))=5 D
x ¥ LM

dk (a)
x dk̄ (a)

x
6

× exp 3 t
4

C
x ¥ LM

k (a)
x (“1 − i“0) k (a)

x +k̄ (a)
x (“1+i“0) k̄ (a)

x )

+
t
4

C
x ¥ LM

[ − ik̄ (a)
x (“1k (a)

x +“0k (a)
x )+ik (a)

x (“1k̄ (a)
x +“0k̄ (a)

x )]

+ C
x ¥ LM

i(`2 − 1 − t) k̄ (a)
x k (a)

x
4 (2.33)

where

“1k (a)
x =k (a)

x+1, x0
− k (a)

x “0k (a)
x =k (a)

x, x0+1 − k (a)
x (2.34)

Moreover

P (a)
e, eŒ

(dq (a))=5 D
x ¥ LM

dq (a)
x dq̄ (a)

x
6 exp 3 t

4
C

x ¥ LM

q (a)
x (“1 − i“0) q (a)

x

+q̄ (a)
x (“1+i“0) q̄ (a)

x +
t
4

C
x ¥ LM

[ − iq̄ (a)
x (“1q (a)

x +“0q (a)
x )

+iq (a)
x (“1q̄ (a)

x +“0q̄ (a)
x )] − C

x ¥ LM

i(`2+1+t) q̄ (a)
x q (a)

x
4

(2.35)
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and finally

Q (a)(k (a), q (a))

=C
x

t
4

{ − k (a)
x (“1q (a)

x +i“0q (a)
x ) − k̄ (a)

x (“1q̄ (a)
x − i“0q̄ (a)

x )

− q (a)
x (“1k (a)

x +i“0k (a)
x ) − q̄ (a)

x (“1k̄ (a)
x − i“0k̄ (a)

x )+ik̄ (a)
x (“1q (a)

x − “0q (a)
x )

+k̄ (a)
x (−“1q (a)

x − “0q (a)
x )+q̄ (a)

x (−“1k (a)
x − “0k (a)

x )+q̄ (a)
x (−“1k (a)

x +“0k (a)
x )}

(2.36)

We find convenient to rewrite the Grassmann variables in momentum
space. We call De, eŒ

the set of k such that

k=
2pn1

M
+

(e − 1) p

2M
k0=

2pn0

M
+

(eŒ − 1) p

2M
(2.37)

and − [M/2] [ n0 [ [(M − 1)/2], − [M/2] [ n1 [ [(M − 1)/2], n0, n1 ¥ Z.
We can write if k=(k0, k)

k (a)
x =

1
M2 C

k ¥ De, eŒ

k (a)
k e−ikx k̄ (a)

x =
1

M2 C
k ¥ De, eŒ

k̄ (a)
k e−ikx (2.38)

Hence

P (a)
e, eŒ

(dk)=5 D
k ¥ De, eŒ

dk̄ (a)
k dk (a)

k
6 exp 5 t

4M2 C
k ¥ De, eŒ

[k (a)
k k (a)

−k(i sin k+sin k0)

+k̄ (a)
k k̄ (a)

−k(i sin k − sin k0)+i2mk(k) k̄ (a)
k k (a)

−k]6 (2.39)

where mk(k)=2
t (`2 − 1 − t)+(2 cos k0+2 cos k − 4)=2 (t − tc)

t +O(k2). In
deriving the above formula we have used that

C
x

k (a)
x “0k (a)

x = C
k ¥ De, eŒ

(e ik0 − 1) k (a)
k k (a)

−k= C
k ¥ De, eŒ

i sin k0k (a)
k k (a)

−k (2.40)

as

C
k ¥ De, eŒ

(cos k0 − 1) k (a)
k k (a)

−k=− C
k ¥ De, eŒ

(cos k0 − 1) k (a)
−k k (a)

k

=− C
k ¥ De, eŒ

(cos k0 − 1) k (a)
k k (a)

−k=0 (2.41)
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2.5. Majorana and Dirac Fermions

We write k (a)
x in (2.38) as

k (a)
x =e−ipe, eŒ

x 1
M2 C

kŒ ¥ D− , −

k (a)
kŒ+pe, eŒ

e−ikŒx=e−ipe, eŒ
xk −(a)

x (2.42)

where pe=(p(e+1)
2M , p(eŒ+1)

2M ), and k −(a)
kŒ =k (a)

kŒ+pe, eŒ

; moreover

P (a)
e, eŒ

(dk)=P(a)(dkŒ) e Q̃(a)
k, e, eŒ (2.43)

where

P (a)(dkŒ)=5 D
kŒ ¥ D− , −

dk̄ −(a)
kŒ dk −(a)

kŒ
6

× exp 5 t
4M2 C

kŒ ¥ D− , −

[k −(a)
kŒ k −(a)

−kŒ (i sin kŒ+sin k −

0)

+k̄ −(a)
kŒ k̄ −(a)

−kŒ (i sin kŒ − sin k −

0)+i2mk(kŒ) k̄ −(a)
kŒ k̄ −(a)

−kŒ ]6 (2.44)

and Q̃a
k, e, eŒ

is defined by (2.43) and is formally vanishing in the limit
M Q .. Proceeding in the same way for P(dq) and Q we find

F 5D
2

a=1
P (a)

e
(a), eŒ(a)(dka) P (a)

e
(a), eŒ(a)(dqa)6 eQ(q, k)eV(k, q)

=F 5D
2

a=1
P (a)(dkŒ) P (a)(dqŒ)6 e Q̃e(kŒ, qŒ)eQ(kŒ, qŒ)eV(kŒ, qŒ) (2.45)

where

Q̃e(kŒ, qŒ)= C
2

a=1
[Q̃ (a)

k, e
(a), eŒ(a)+Q̃ (a)

q, e
(a), eŒ(a)+Q̃ (a)

kq, e
(a), eŒ(a)]; (2.46)

of course Q̃−, −, −, − (kŒ, qŒ)=0. If

D+
−, − ={kŒ ¥ D+, − : kŒ > 0} (2.47)

we can write P (a)(dkŒ) in the following way

P (a)(dk −(a))= D
kŒ ¥ D+

−, −

dk −(a)
kŒ dk −(a)

−kŒ dk̄ −(a)
kŒ dk̄ (−a)

−kŒ

× exp 5 t
4M2 C

kŒ ¥ D+
−, −

t (a)T
kŒA(kŒ) t (a)

kŒ
6 (2.48)
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where

t (a)T
kŒ=(k −(a)

kŒ , k −(a)
−kŒ , k̄ −(a)

kŒ , k̄ −(a)
−kŒ ) (2.49)

and A(kŒ) is

R 0 sin k −

0+i sin kŒ 0 0
− sin k −

0 − i sin kŒ 0 − imk(kŒ) 0
0 imk(kŒ) 0 − sin k −

0+i sin kŒ

0 0 sin k −

0 − i sin kŒ 0

S
(2.50)

Hence if we perform the change of variables

k−
1, kŒ=

1

`2
(k −(1)

kŒ +ik −(2)
kŒ ) k+

1, kŒ=
1

`2
(k −(1)

kŒ − ik −(2)
kŒ )

k−
−1, kŒ=

1

`2
(k̄ −(1)

kŒ +ik̄ −(2)
kŒ ) k+

−1, kŒ=
1

`2
(k̄ −(1)

kŒ − ik̄ −(2)
kŒ )

(2.51)

we find by (2.7)

P (1)(dkŒ) P (2)(dkŒ)= D
kŒ ¥ D+

−, −

D
w=± 1

dk+
kŒ, w dk−

kŒ, w dk+
−kŒ, w dk−

−kŒ, w

× exp 5 t
4M2 C

kŒ ¥ D+
−, −

t̃T
kŒA(kŒ) t̃ (+)

kŒ
6 (2.52)

where

t̃T
k =(k−

k, 1, k−
−k, 1, k−

k, −1, k−
−k, −1)

t̃+, T
k =(k+

k, 1, k+
−k, 1, k+

k, −1, k+
−k, −1)

(2.53)

We can make another change of variables k+
k, w Q k+

−k, w so that at the end,
if P (1)(dk) P (2)(dk) =P(dk)

P(dk)= D
k ¥ D+

−, −

D
w=± 1

dk+
−k, w dk−

k, w dk+
k, w dk−

−k, w

× exp 5 t
2M2 C

k ¥ D+
−, −

t̂T
k A(k) t̂ (+)

k
6 (2.54)
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where

t̂T
k =(k−

k, 1, k−
−k, 1, k−

k, −1, k−
−k, −1)

t̂+, T
k =(k+

−k, 1, k+
k, 1, k+

−k, −1, k+
k, −1)

(2.55)

and in terms of the original variables

k−
1, kŒ=

1

`2
(k −(1)

kŒ +ik −(2)
kŒ ) k+

1, −kŒ=
1

`2
(k −(1)

kŒ − ik −(2)
kŒ )

k−
−1, k=

1

`2
(k̄ −(1)

kŒ +ik̄ −(2)
kŒ ) k+

−1, −k=
1

`2
(k̄ −(1)

kŒ − ik̄ −(2)
kŒ )

(2.56)

In the following we will call kŒ simply k. If we write

k ±
x =

1
M2 C

k ¥ D− , −

e ± ikxk ±
k (2.57)

we can rewrite (2.56) in the coordinate space as

k−
1, x=

1

`2
(k −(1)

x +ik −(2)
x ) k+

1, x=
1

`2
(k −(1)

x − ik −(2)
x )

k−
−1, x=

1

`2
(k̄ −(1)

x +ik̄ −(2)
x ) k+

−1, x=
1

`2
(k̄ −(1)

x − ik̄ −(2)
x )

(2.58)

or in terms of the original variables

k−
1, x=

1

`2
(e ip

e(1), e−(1)xk (1)
x +ie ip

e(2), e−(2)xk (2)
x )

k+
1, x=

1

`2
(e ip

e(1), e−(1)xk (1)
x − ie ip

e(2), e−(2)xk (2)
x )

k−
−1, x=

1

`2
(e ip

e(1), e−(1)x k̄ (1)
x +ie ip

e(2), e−(2)x k̄ (2)
x )

k+
−1, x=

1

`2
(e ip

e(1), e−(1)x k̄ (1)
x − ie ip

e(2), e−(2)x k̄ (2)
x )

(2.59)
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If k ¥ D+
−, − then − k ¥ D−

−, − with D+
−, − 2 D−

−, − =D−, − so that

P(dk)= D
k ¥ D− , −

D
w=± 1

dk+
k, w dk−

k, w exp 5 t
2M2 C

k ¥ D− , −

t̄T
k Ã(k) t̄ (+)

k
6 (2.60)

Ã(k)=1 i sin k+sin k0

− imk(k)
imk(k)

i sin k − sin k0

2

t̃T
k =(k−

k, 1, k−
k, −1) t̃+, T

k =(k+
k, 1, k+

k, −1) (2.61)

Remark. In the physical language, the change of variables (2.59)
means that one is describing the system in terms of Dirac fermions instead
in terms of Majorana fermions.

A similar computation can be done for P(dq); proceeding exactly as
above we find

P (1)(dq (1)) P (2)(dq (2))=P(dq) (2.62)

where

P(dq)= D
k ¥ D− , −

D
w=± 1

dq+
k, w dq−

k, w exp 5 t
2M2 C

k ¥ D− , −

ḡT
k B̃(k) ḡ (+)

k
6 (2.63)

B̃(k)=1 i sin k+sin k0

− imq(k)
imq(k)

i sin k − sin k0

2

ḡT
k =(q−

k, 1, q−
k, −1) ḡ+, T

k =(q+
k, 1, q+

k, −1) (2.64)

Note that tmq(k)=2(`2+1+t)+2t(2− cos k0 − cos k1), and the mass of
the q fields never vanishes. It holds that

F P(dq) q−
x, wq+

y, wŒ=g (q)
w, wŒ(x − y), (2.65)

where

g (q)
w, wŒ(x − y)=

1
2tM2 C

k
e−ik(x − y)[B̃−1(k)]w, wŒ, (2.66)

and B̃−1(k) is the inverse of the B̃(k) defined in (2.63).
If we set

A(k)=det B̃(k)=−sin2 k0 − sin2 k − [mq(k)]2, (2.67)
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then

B−1(k)=
1

A(k)
1 − sin k0+i sin k

imq(k)
− imq(k)

sin k0+i sin k
2 . (2.68)

Similar formulas hold for g (k)(x − y) and, if i=k, q, the following bounds
holds, for any N > 1

|g (i)
w, w(x − y)| [

1
1+|dM(x − y)|

CN

1+|midM(x − y)|N (2.69)

|g (i)
w, −w(x − y)| [

|mi | CN

1+|midM(x − y)|N (2.70)

where

dM(x − y)=1M
p

sin 1p(x − y)
M

2 ,
M
p

sin 1p(x0 − y0)
M

22 (2.71)

The same transformations are done for the term eSn
e, eŒ which can be

written as the product of three terms similar to (2.33), (2.35), and (2.36)
with t replaced by n and `2 − 1 in (2.33) and `2+1 in (2.35) replaced by
0; then (2.33),(2.35) can be written in terms of Dirac fermions as (2.61) and
(2.64) with t replaced by n and `2 − 1 or `2+1 replaced by 0.

We have then written the partition function as Grassmann integral
over the q-fields, which are massive with a mass O(1), and the k-fields with
a small mass O(t − tc) close to the critical temperature; we integrate out
first the heavy fermions q to get an effective theory in terms of the light
fermions k only.

3. INTEGRATION OF HEAVY FERMIONS

3.1. Local Interactions

By the change of variables in the preceding section we can write (2.23)
as

Z e
(1), e

−(1), e
(2), e

−(2)

2I =eM2
N F P(dk) F P(dq) e Q̃e(q, k)eQ(q, k)eV(k, q) (3.1)
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where N is a normalization constant, P(k) and P(dq) are given by (2.60),
(2.63), V, Q, Q̃e are obtained respectively from (2.36) and (2.46) by the
change of variables (2.59). We write

V(k, q)=V2(k)+V4(k)+Vq(k, q) (3.2)

where V2(k) is a sum of monomials bilinear in the k, k+ variables, V4(k) is
a sum of monomials quartic in the k, k+ and Vq(k, q) is sum of monomials
bilinear or quartic each one containing at least a qw field. It holds that,
from (2.31),

H̄ (a)
x H (a)

x =
i
2

k (a)
x k̄ (a)

x +R(a)
1 V̄ (a)

x V (a)
x =

i
2

k (a)
x k̄ (a)

x +R(a)
2 (3.3)

where R (a)
i is sum of monomials bilinear in the fields q, q̄, k, k̄ and con-

taining at least one field q̄ or q. Moreover, from (2.58)

k (1)
x k̄ (1)

x =1
2 [k1, xk−1, x+k1, xk+

−1, x+k+
1, x k−1, x+k+

1, x k+
−1, x]

k (2)
x k̄ (2)

x =1
2 [ − k1, xk−1, x − k+

1, x k+
−1, x+k+

1, x k−1, x+k1, xk+
−1, x]

(3.4)

hence

k (a)
x k̄ (a)

x k (a)
x k̄ (a)

x =0

k (1)
x k̄ (1)

x k (2)
x k̄ (2)

x =e−2i(p
e(1), e(1)+p

e(1), e(1) ) xk+
1, x k+

−1, x k−
−1, x k−

1, x

(3.5)

and from (2.26)

V4(k)=−2e−2i(p
e(1), e(1)+p

e(1), e(1) ) x(l̃a+l̃b) C
x

k+
1, x k+

−1, x k−
−1, x k−

1, x+VR
4 (k)

(3.6)

and VR
4 is a sum of quartic monomials with coupling O(l) in which at

least a “k field. In the same way it is easy to check that

V2=
1

2M2 C
k, w

{[n+f1(l)][iw+cos k0+cos k − 2] kk, wk+
k, −w

+[n+f2(l)][w sin k0+i sin k] kk, wk+
k, w} (3.7)

where |f1 |, |f2 | [ C |l|.
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3.2. Integration of the Heavy Fields

We now integrate the heavy q fields

F P̄(dk) eM2
N

(1)+V
(1)(k)=F P(dk) F P(dq) eQ(q, k)e Q̃e(q, k)eV(k, q) (3.8)

where N (1) is a constant. Let us consider a set of coordinates x1,..., x2n

which are not all different one to the other and we will denote by ;g
x1,..., x2n

the sum over all the distinct [ 2n variables. We prove the following result.

Theorem 2. There exists an e such that, for |l|, |n| [ e

V (1)= C
n \ 1

C
{e, a, w}

C
g

x1,..., x2n

Wn(x1,..., x2n) “
a1 k e1

x1, w1
· · · “

a2n k e2n
x2n, w2n

(3.9)

and, for n > 2

C
g

x1,..., x2n

|Wn(x1,..., xn)| [ M2Cn |l|n/2 (3.10)

For n=2

C
g

x1,..., x4

W2(x1,..., x2n) “
a1 k e1

x1, w1
· · · “

a2n k e2n
x2n, w2n

=V4(k)+ C
g

x1,..., x4

C
{e, a, w}

W2(x1,..., x4) “
a1 k e1

x1, w1
· · · “

a2n k e2n
x2n, w2n

(3.11)

with ;g
x1,..., x4

|W2(x1,..., x4)| [ M2C |l| and Ŵ2(0,..., 0)=O(l2); for n=1

C
g

x1, x2

C
{e, a, w}

W1(x1, x2) “
a1 k e1, w1

x1
“

a2 k e2
x2, w2

=V2(k)+ C
g

x1, x2

C
{e, a, w}

W1(x1, x2) “
a1 k e1

x1, w1
“

a2 k e2
x2, w2

(3.12)

with ;g
x1, x2

|W1(x1, x2)| [ M2C |l|; V2 and V4 are given by (3.6) and (3.7).
Finally

P̄(dk)= D
k ¥ D− , −

D
w=± 1

dk+
k, w dk−

k, w exp 5−
t

M2 C
k ¥ D− , −

k+
k, wÃw, wŒ(k) k−

k, wŒ
6

(3.13)
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with

Ã(k)=
1

C0+f0, 0(k)

×1 Z̃(i sin k+sin k0)+f1, 1(k)
i(t − tc) C0+f2, 1(k)

− i(t − tc) C0+f1, 2(k)
Z̃(i sin k − sin k0)+f2, 2(k)

2

with C0=(t+1+`2)2 and Z̃=t
2 [(2t+2 `2 t)+(2 `2+3+t2)] and

f0, 0(k), fi, j(k), i, j=1, 2 analytic O(k2) functions.

Remark 1. The fact that Ŵ2(0,..., 0)=O(l2) can be checked by an
explicit computations of all the contributions with coupling O(l) to W2,
noting that they can be only obtained contracting a terms quartic in the q

fields with one of the addend of (2.36); each of such terms carries a deriva-
tive in the coordinate space, hence the Fourier transform of such terms is
vanishing at zero momentum.

Remark 2. The fermionic integration P̄(dk) reduces, neglecting the
functions f0, 0(k), fi, j(k) which are O(k2), to the integration of a system of
Dirac fermions on a lattice with mass O(t − tc). Hence, apart from the
functions f0, 0(k), fi, j(k), it coincides with the free action of the Thirring
model. Note however that the interaction in the Thirring model is quartic
and invariant under the transformation k e

x, w Q e ieaw k e
x, w in the massless

case; both this properties are not true for (3.9).

Proof. We start from the definition of truncated expectation:

ET
q (X; n)=

“
n

“ln log F P(dq) elX(q)|l=0 (3.14)

so that, calling

V̄(q, k)=Q(q, k)+Q̃e(q, k)+V(q, k) (3.15)

we obtain

M2N(1)+V (1)(k)=log F P(dq) e−V̄(q, k)= C
.

n=0

(−1)n

n!
ET

q (V(., k; n))
(3.16)
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We label each one of the monomials (whose number will be called C0) in V̄

by an index vi, so that each monomial can be written as

C
xvi

v(xvi
) D

f ¥ P̃vi

“
a(f)k e(f)

w(f), x(f) D
f ¥ Pvi

“
a(f)q e(f)

w(f), x(f) (3.17)

where xvi
is the total set of coordinates associated to vi and Pvi

and P̃vi
are

set of indices labeling the q or k-fields. We can write

V (1)(k)= C
P̃v0

] 0
V (1)(P̃v0

), (3.18)

V (1)(P̃v0
)=C

xv0

5 D
f ¥ P̃v0

“
a(f)k e(f)

w(f), x(f)
6 K (0)

P̃v0
(xv0

), (3.19)

K (0)
P̃v0

(xv0
)= C

.

n=1

1
n!

C
v1,..., vn

ET
q [q̃(Pv1

),..., q̃(Pvn
)] D

n

i=1
vi(xvi

), (3.20)

where ;v1,..., vn
[ Cn

0, P̃v0
=1i P̃vi

and xv0
=1i xvi

. We use now the well
known expression for ET (see, for instance, ref. 17)

ET
q (q̃(P1),..., q̃(Ps))=C

T
D
l ¥ T

gq
w

−, w
+(xl − yl) F dPT(t) det GT(t) (3.21)

where:

– P is a set of indices, and

q̃(P)= D
f ¥ P

“
a(f)q e(f)

x(f), w(f) (3.22)

– T is a set of lines forming an anchored tree between the cluster of
points P1,..., Ps, i.e., T is a set of lines which becomes a tree if one identifies
all the points in the same clusters.

– t={ti, iŒ ¥ [0, 1], 1 [ i, iŒ [ s}, dPT(t) is a probability measure with
support on a set of t such that ti, iŒ=ui · uiŒ for some family of vectors
ui ¥ R s of unit norm.

– GT(t) is a (n − s+1) × (n − s+1) matrix, whose elements are given
by GT

ij, iŒjŒ=ti, iŒ g̃w
−, w

+(xij − yiŒjŒ) with (f−
ij , f+

iŒjŒ) not belonging to T.

If s=1 the sum over T is empty, but we can still use the above equa-
tion by iterpreting the r.h.s. as 1 if P1 is empty, and det G(P1) otherwise.

We bound the determinant using the well known Gram–Hadamard
inequality, stating that, if M is a square matrix with elements Mij of the
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form Mij=OA i, BjP, where A i, Bj are vectors in a Hilbert space with scalar
product O · , ·P, then

|det M| [ D
i

||A i || · ||Bi ||. (3.23)

where || · || is the norm induced by the scalar product.
Let H=R s é H0, where H0 is the Hilbert space of complex four

dimensional vectors F(k)=(F1(k),..., F4(k)), Fi(k) being a function on the
set D−, − , with scalar product

OF, GP= C
4

i=1

1
M2 C

k
Fg

i (k) Gi(k). (3.24)

and it is easy to veriy that

GT
ij, iŒjŒ=ti, iŒ g

(q)
w −

l , w
+
l

(xij − yiŒjŒ)=Oui é Ax(f −
ij ), w(f −

ij ), uiŒ é Bx(f+
iŒjŒ), w(f+

iŒjŒ)
P,
(3.25)

where ui ¥ R s, i=1,..., s, are the vectors such that ti, iŒ=ui · uiŒ, and

Ax, w(k)=e ikŒx 1

` − A(k)
·˛ (−sin k0+i sin k, 0, −imq(k), 0), if w=+1,

(0, imq(k), 0, mq(k)), if w=−1,

Bx, w=e ikŒy 1

` − A(k)
·˛ (1, 1, 0, 0), if w=+1,

(0, 0, 1, (sin k0+i sin k)/mq(k)), if w=−1.
(3.26)

Hence from (3.23) we immediately find

|GT
ij, iŒjŒ | [ Cn

1 (3.27)

Note that C1 is an O(1) constant; this follows from the fact that the
Grassmann variable q has an O(1) mass. Finally we get

C
xv0

|K(1)
P̃v0

(xv0
)|

[ C
.

n=1

1
n!

C
v1,..., vn

C
xv1

,..., xvn

Cn
1 C

T

5D
l ¥ T

|g̃q(xl − yl)|6 D
n

i=1
|vi(xvi

)| (3.28)
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where we have used that > dPT(t)=1. Regarding the sum over T, it is
empty if n=1. If n > 1 the number of anchored trees with di lines branch-
ing from the vertex vi can be bounded, by using Caley’s formula, by

(sv − 2)!
(d1 − 1)! · · · (dsv

− 1)!
|Pv1

|d1 · · · |Pvn
|dn; (3.29)

hence the number of addenda in ;T is bounded by n! Cn
2. Finally T and the

1i xvi
form a tree connecting all points, so that using that the propagator

is massive and that the interactions are short ranged ;xv1
,..., xvn

;T ×
[<l ¥ T |g̃q(xl − yl)|] <n

i=1 |vi(xvi
)| [ Cn

3 |l| ñ M2, where ñ is the number of
coupling O(l).

Let us consider the case |P̃v0
| \ 4. Note that if to vi are associated only

terms from V(k, q), then ñ=n. The same bound holds for M large
enough, if there are vi associated with Q̃e; in fact such terms are vanishing
as M Q . (one has in the bounds an extra M−1 for any of such vi, for
dimensional reasons). Let us consider now the case in which there are end-
points associated to Q(k, q), which have O(1) coupling; there are at most
|P̃v0

| end-points associated with Q(k, q). In fact in Q(k, q) there are only
terms of the form kq, so at most the number of them is equal to the
number of k fields. If we call nl [ ñ the number of vertices quartic in the
fields it is clear that nl \ max{1, |P̃v0

|/2 − 1}; hence

C
xv0

|K (1)
P̃v0

(xv0
)| [ M2 C

.

ñ=1
C ñ+|P̃v0

| |l|
ñ
2 |l|max{1

2
, |P̃v0

|/4 − 1/2} (3.30)

and (3.10) holds for |P̃v0
| \ 4 (in the r.h.s. of (3.30) the sum over the

number of vi to which are associated quadratic monomials with coupling
O(l) is already done).

Consider now the case |P̃v0
|=2; in this case there are terms l inde-

pendent, obtained when to all the vi are associated with elements of
Q(k, q). It is convenient to include all such terms in the free measure, as
they cannot be considered as perturbations (they are not O(l)). Instead of
computing all such terms, we can proceed in a more rapid way by noting
that

F P̄(dk)=F P(dk) F P(dq) eQ(k, q) (3.31)

and, if OXP0=> P̄0(dk) X, it holds

Ok−
x, 1 k+

y, 1P0=1
2 O(k (1)

x +ik (2)
x )(k (1)

y − ik (2)
y )P0=Ok (1)

x k (1)
y P0 (3.32)
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as Ok (1)k (2)P0=0 if l=0 (the two systems are decoupled). In the same way

Ok−
x, −1 k+

y, −1P0=1
2 O(k̄ (1)

x +ik̄ (2)
x )(k̄ (1)

y − ik̄ (2)
y )P0=Ok̄ (1)

x k̄ (1)
y P0 (3.33)

and finally

Ok−
x, 1 k+

y, −1P0=1
2 O(k (1)

x +ik (2)
x )(k̄ (1)

y − ik̄ (2)
y )P0=Ok (1)

x k̄ (1)
y P0 (3.34)

Note that Oka
x ka

yP0 are the Ising correlation computed in refs. 19 and 21
where is found that

Ok (a)
x k (a)

y P0=
1

M2 C
k

e−ik(x − y)

D
c1, 1(k) (3.35)

Ok̄ (a)
x k̄ (a)

y P0=
1

M2 C
k

e−ik(x − y)

D
c2, 2(k) (3.36)

Ok (a)
x k̄ (a)

y P0=
1

M2 C
k

e−ik(x − y)

D
c1, 2(k) (3.37)

where

D=2t(1 − t2)(2 − cos k0 − cos k)+(t+1+`2)2 (t − `2+1)2 (3.38)

and

c1, 1(k)=
t
2

[(2t+2 `2 t)(sin k0 cos k − i sin k cos k0)

+(2 `2+3+t2)(sin k0 − i sin k)] (3.39)

c2, 2(k)=
t
2

[(2t+2 `2 t)(sin k0 cos k − i sin k cos k0)

+(2 `2+3+t2)(−sin k0 − i sin k)] (3.40)

c1, 2(k)=−c1, 2(k)=
− i
2

[(2 `2 t2+4t2) cos k cos k0

+(t3+2t `2+t)(cos k+cos k0) − 2 − 2 `2+2t2] (3.41)

Note that

c1, 1(k) c2, 2(k) − c1, 2(k) c2, 1(k)
D(k)

− (t+1+`2)2=f(k)

where f(k)=O(k2) and with bounded derivatives.
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4. RENORMALIZATION GROUP FOR LIGHT FERMIONS

4.1. Multiscale Analysis

We start considering Z−, −, −, −
2I in the sum (2.22), written as in (3.8). We

introduce a scaling parameter c > 1 and a positive function q(k) ¥ C. such
that

q(k)=q(−k)=˛1 if |k| < t0a0/c,

0 if |k| > a0,
(4.1)

where

|k|=`sin k2
0+sin k2 . (4.2)

We define also, for any integer h [ 0,

fh(k)=q(c−hk) − q(c−h+1k); (4.3)

we have, for any hM < 0,

q(k)= C
0

h=hM+1
fh(k)+q(c−hMk). (4.4)

Note that, if h [ 0, fh(k)=0 for |k| < t0ch − 1 or |k| > t0ch+1, and fh(k)=1,
if |k|=t0ch. Therefore

fh(k)=0 -h < hM=min{h: t0ch+1 > `2 (pM−1)2}, (4.5)

and

1= C
1

h=hM

fh(k) f1=1 − q(k). (4.6)

We define a sequence of effective potentials V(h)(k) defined iteratively
in the following way; assuming that we have integrated the scales h=1,
0, −1, −2,..., h+1

e−M2EM=F PZh, mh, Ch
(dk ([ h)) e−V

(h)(`Zh k
([ h)) − M2Eh, V (h)(0)=0, (4.7)
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where

PZh, mh, Ch
(dk ([ h))

= D
k: C − 1

h (k) > 0

D
w=± 1

dk̂ ([ h)+
k, w dk̂ ([ h) −

kŒ, w

N(k)

· exp 3 −
1

M2 C
k: C − 1

h (k) > 0

Ch(k) Zh C
w, wŒ=± 1

k̂ ([ h)+
k, w T (h+1)

w, wŒ k̂ ([ h) −
k, wŒ

4 , (4.8)

Ch(k)−1= C
h

j=hM

fj(kŒ), (4.9)

and the 2 × 2 matrix Th(kŒ) is given by

1
C0+f0, 0(k)

1 Z̃(i sin k+sin k0)+f1, 1(k) Z−1
h

imh − 1(k)+f2, 1(k) Z−1
h

− imh − 1(k)+f1, 2(k) Z−1
h

Z̃(i sin k − sin k0)+f2, 2(k) Z−1
h

2

(4.10)

with m1=C0(t − tc) and C0, Z̃ defined in Theorem 2.
Finally V (h) is given by

V (h)(k ([ h))= C
.

n=1
C
g

x1,..., x2n,
s
¯

, w
¯

, a

D
2n

i=1
“

ai k ([ h) si
xi, wi

W (h)
2n, s

¯
, w

¯
(x1,..., x2n) (4.11)

4.2. The Localization Operator

We define an L operation, for h [ 0, in the following way:

(1) If 2n=4, then

LŴ (h)
4, s

¯
, w

¯
(k1, k2, k3)=Ŵ (h)

4, s
¯

, w
¯
(k̄++, k̄++, k̄++), (4.12)

where

k̄ggŒ=1g
p

M
, gŒ

p

M
2 . (4.13)

(2) If 2n=2 then

LŴ (h)
2, s

¯
, w

¯
(k)=

1
4

C
g, gŒ=± 1

5Ŵ (h)
2, s

¯
, w

¯
(k̄ggŒ) ·

· +Ŵ (h)
2, s

¯
, w

¯
(k̄ggŒ)1g

L
p

sin k+gŒ
b

p
sin k0

26 (4.14)
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(3) In all the other cases

LŴh
2n, s

¯
, w

¯
(k1,..., k2n − 1)=0. (4.15)

By (4.12) the operator L satisfies the relation RL=0.

Remark. First note that in the limit M Q . (4.14) becomes simply

LŴ (h)
2, s

¯
, w

¯
(k)=[Ŵ (h)

2, s
¯

, w
¯
(0)+k0“k0

Ŵ (h)
2, s

¯
, w

¯
(0)+k“kŴa(h)

2, s
¯

, w
¯

(0)], (4.16)

hence LŴ (h)
2, s

¯
, w

¯
(k) has to be understood as a discrete version of the Taylor

expansion up to order 1. Moreover the localization operator acting on the
effective potential in the x-space representation can be seen as an operator
on monomials of Grassmann variables; for instance (4.12) implies in the
x-space representation, in the M Q . limit

L C
g

x1,..., x4

D
4

i=1
k ([ h) ei

xi , wi
W (h)

4 (x1,..., x4)=Ŵ (h)
4 (0, 0, 0) D

4

i=1
k ([ h) ei

x1, wi
(4.17)

where the r.h.s. of the above equation is always vanishing unless
<4

i=1 k ([ h) ei
x1, wi

is a permutation of k ([ h)+
x1, + k ([ h) −

x1, + k ([ h)+
x1, − k ([ h) −

x1, − ; hence L acts
on a quartic monomial producing a local expression. Analogous consider-
ations can be done for n=1.

4.3. We have, before continuing, to exploit the consequences of some
symmetries. There are no local terms of the form k+

x, 1 k−
x, 1; such local terms

can be written as k (1)
x k (2)

x , but the model is invariant under the transfor-
mation

k (1), k̄ (1), q (1), q̄ (1)
Q − k (1), −k̄ (1), −q (1), −q̄ (1)

k (2), k̄ (2), q (2), q̄ (2)
Q k (2), k̄ (2), q (2), q̄ (2),

(4.18)

hence such terms cannot be present as they violate such symmetry.
There are no local terms of the form k1, xk−1, x or k+

1, x k+
−1, x (or

k1, x“k−1, x, k+
1, x“k+

−1, x); in fact,

k1, xk−1, x=1
2 [k (1)

x k̄ (1)
x − k (2)

x k̄ (2)
x +ik (1)

x k̄ (2)
x +ik (2)

x k̄ (1)
x ] (4.19)

and the last two terms violates the symmetry (4.18); moreover the first
two terms are odd in the exchange (1), (2) Q (2), (1) and the model is
invariant in the exchange (1), (2) Q (2), (1). Moreover the model is
invariant under complex conjugation and the exchange

k (a)
x , k̄ (a)

x Q k̄ (a)
x , k (a)

x q (a)
x , q̄ (a)

x Q q̄ (a)
x , q (a)

x ; (4.20)
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this follows from the fact that, from (2.31), H̄ (a), H (a), V̄ (a), V (a), written in
terms of k̄ (a), k (a), q̄ (a), q (a), are invariant under such transformation. Hence
the coefficient of the local part of the quartic (non vanishing) terms is
real; in fact ŵ(0, 0, 0) k+

1, x k1, xk+
−1, x k−1, x=ŵ(0, 0, 0) k (1)

x k̄ (1)
x k (2)

x k̄ (1)
x must

be equal, by the above invariance, to ŵg(0, 0, 0) k̄ (1)
x k (1)

x k̄ (2)
x k (1)

x , hence
ŵ(0, 0, 0)=ŵg(0, 0, 0). Finally the combination of local terms k+

x, 1 k−
x, −1+

k+
x, −1 k−

x, 1 is equal to 1
2 [k (1)

x k̄ (2)
x − k (2)

x k̄ (1)
x ] so it cannot be present as it

violates the symmetry (4.18). On the other hand k+
x, 1 k−

x, −1 − k+
x, −1 k−

x, 1 is
equal to 1

2 [k (1)
x k̄ (1)

x +k (2)
x k̄ (2)

x ]; hence the coefficient of the local part is
imaginary; in fact ŵ(0)[k (1)

x k̄ (1)
x +k (2)

x k̄ (2)
x ] must be equal to ŵg(0)[k̄ (1)

x k (1)
x

+k̄ (2)
x k̄ (2)

x ], by the invariance under complex conjugation and (4.20), hence
ŵ(0)=−ŵg(0).

4.4. By (4.12), (4.14), (4.15) and the symmetry relations in Section 4.3,
we can write LV (h) in the following way:

LV (h)(k ([ h))=(sh+chnh) F ([ h)
s − lhF ([ h)

l +zhF ([ h)
z +ahF ([ h)

z

+ C
2

i=1
C
w

zi, w, hF ([ h)
i + C

2

i=1
C
w

z̃i, w, hF̃ ([ h)
i (4.21)

where, if |l|, |n| [ e, z̃i, w, 1, zi, w, 1=O(e), s1=O(e), l1=2l sech2 J(a+b)+
O(e2), n1=n+O(e) and

F ([ h)
m = C

w=± 1

iw
M2 C

k ¥ DM

k̂ ([ h)+
k, w k̂ ([ h) −

k, −w ,

F ([ h)
l =

1
(M)4 C

k1,..., k4 ¥ DM

k̂ ([ h)+
k1, +1 k̂ ([ h) −

k2, −1 k̂ ([ h)+
k3, −1 k̂ ([ h) −

k4, +1 d(k1 − k2+k3 − k4),

F ([ h)
a =

1
M

C
k ¥ DM

i sin k k̂ ([ h)+
k, w k̂ ([ h) −

k, w ,

F ([ h)
z =

1
M

C
k ¥ DM

w sin k0k̂ ([ h)+
k, w k̂ ([ h) −

k, w ,

F̃ [ h
i =

1
M

C
k ¥ DM

f̃i(k) k̂ ([ h)+
k, w k̂ ([ h) −

k, −w ,

F [ h
i = C

k ¥ DM

f (k)
i k̂ ([ h)+

k, w k̂ ([ h) −
k, w ,

(4.22)
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with f1=sin k and f2=sin k0. The constants nh, sh, lh, zh, ah are real. At
the end of our iterative construction it will appear that it is possible to
write (see Remark 1 in Section 4.9)

Ŵ (h)
2, s

¯
, w

¯
=Ŵa(h)

2, s
¯

, w
¯
+Ŵb(h)

2, s
¯

, w
¯

(4.23)

with Ŵa(h)
2, s

¯
, w

¯
vanishing if at least one mk=0, for 1 \ k \ h+1, and Ŵb(h)

2, s
¯

, w
¯

is
the rest; we define

sh=dw, −w
51

4
C

g, gŒ=± 1
Ŵa(h)

2, s
¯

, w
¯
(k̄ggŒ)6 chnh=dw, −w

51
4

C
g, gŒ=± 1

Ŵb(h)
2, s

¯
, w

¯
(k̄ggŒ)6 .

(4.24)

In the same way we include in ;2
i=1 ;w zi, w, hF ([ h)

i all the terms not in
zhF ([ h)

z +ahF ([ h)
z with zh, ah real.

We renormalize the free integration PZh, mh, Ch
(dk ([ h)) by adding to it

part of the r.h.s. of (4.21). We get

F PZh, mh, Ch
(dk ([ h)) e−V

(h)(`Zh k
([ h))

=e−Lbth F PZ̃h − 1, mh − 1, Ch
(dk ([ h)) e−Ṽ

(h)(`Zh k
([ h)), (4.25)

where PZ̃h − 1, mh − 1, Ch
(dk ([ h)) is obtained from PZh, mh, Ch

(dk ([ h)) by substituting
Zh with

Z̃h − 1(k)=Zh[1+C−1
h (k) Z̃−1(C0+f0, 0(k)) zh] (4.26)

and mh(k) with

mh − 1(k)=
Zh

Z̃h − 1(k)
[mh(k)+C−1

h (k)(C0+f0, 0(k)) sh]; (4.27)

moreover Ṽ (h)=V (h) − ZhshF ([ h)
s − Zhzh(F ([ h)

z +F ([ h)
a ). We will call

mh(0) — mh. The r.h.s of (4.25) can be written as

e−M2th F PZh − 1, mh − 1, Ch − 1
(dk ([ h − 1))

× F PZh − 1, mh − 1, f − 1
h

(dk (h)) e−Ṽ
(h)(`Zh k

([ h)), (4.28)
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where the factor exp(−M2th) in (4.25) takes into account the different
normalization of the two integrations and

Zh − 1=Zh(1+C0Z̃−1zh), f̃h(k)=Zh − 1
5C−1

h (k)
Z̃h − 1(k)

−
C−1

h − 1(k)
Zh − 1

6 . (4.29)

Note that f̃h(k) has the same support of fh(k). The single scale propagator
is

F PZh − 1, mh − 1, f̃ − 1
h

(dk (h)) k (h) −
x, w k (h)+

y, wŒ =
g (h)

w, wŒ(x − y)
Zh − 1

, (4.30)

where

g (h)
w, wŒ(x − y)=

1
M2 C

k
e−ik(x − y)f̃h(k)[T−1

h (k)]w, wŒ, (4.31)

and T−1
h (k) is the inverse of the Th(k) defined in (4.10). The large distance

behaviour of g (h)
w, wŒ(x − y) is given by, if |zh | [ 1

2 and supk \ h | Zk
Zk − 1

| [ e |l|, given
the positive integers N, n0, n1 and putting n=n0+n1, and the constant CN, n

|“n0
x0

“
n1
x g (h)

w, w(x − y)| [ CN, n
ch+n

1+(ch |d(x − y)|)N (4.32)

|“n0
x0

“
n1
x g (h)

w, −w(x − y)| [ CN, n
:mh

ch
: ch+n

1+(ch |d(x − y)|)N . (4.33)

where “x denotes the discrete derivative. It will be useful to write

g (h)
w, w(x − y)=g(h)

L; w, w(x − y)+g̃ (h)
w, w(x − y)+ĝ (h)

w, w(x − y) (4.34)

with

g (h)
L; w, w(x − y)=

1
M2 C

k

e−ik(x − y) C0 fh(k)
− Z̃w sin k0+iZ̃ sin k

, (4.35)

obeying to the bound (4.32) while

|“n0
x0

“
n1
x g̃ (h)

w, w(x − y)| [ CN, n
c

3
2

h+n

1+(ch |d(x − y)|)N , (4.36)

|“n0
x0

“
n1
x ĝ (h)

w, w(x − y)| [ CN, n
:mh

ch
:2 ch+n

1+(ch |d(x − y)|)N . (4.37)
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Moreover

g (h)
w, −w(x − y)=ĝ (h)

w, −w(x − y)+g̃ (h)
w, −w(x − y) (4.38)

with

ĝ (h)
w, −w(x − y)=

1
M2 C

k
e−ik(x − y)fh(k)

− iC0mh(k)
Z̃2 sin2 k0+Z̃2 sin k2+m2

h(k)
(4.39)

verifying (4.33) and g̃ (h)
w, −w(x − y) verifying (4.36).

We now rescale the field so that

Ṽ (h)(`Zh k ([ h))=V̂ (h)(`Zh − 1 k ([ h)); (4.40)

it follows that

LV̂ (h)(k)=chnhF ([ h)
s +dhF ([ h)

a +lhF ([ h)
l

+ C
2

i=1
C
w

zi, w, hF ([ h)
i + C

2

i=1
C
w

z̃i, w, hF̃ ([ h)
i , (4.41)

where

nh=
Zh

Zh − 1
nh, dh=

Zh

Zh − 1
(ah − zh), lh=1 Zh

Zh − 1

22

lh, (4.42)

and z̃i, w, h= Zh
Zh − 1

z̃i, w, h, zi, w, h= Zh
Zh − 1

zi, w, h. We call vh=(lh, dh, 1i, w z̃i, w, h,
1i, w zi, w, h) and the set of (vh, mh, nh) are called running coupling constants.

If we now define

e−V
(h − 1)(`Zh − 1 k

([ h − 1)) − LbẼh

=F PZh − 1, mh − 1, f̃ − 1
h

(dk (h)) e−V̂
(h)(`Zh − 1 k

([ h)), (4.43)

it is easy to see that V (h − 1)(`Zh − 1 k ([ h − 1)) is of the form (4.11) and that

Eh − 1=Eh+th+Ẽh. (4.44)

It is sufficient to use the well known identity

M2Ẽh+V (h − 1)(`Zh − 1 k ([ h − 1))

= C
.

n=1

1
n!

(−1)n+1 ET, n
h (V̂ (h)(`Zh − 1 k ([ h))), (4.45)
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where ET, n
h denotes the truncated expectation of order n with propagator

Z−1
h − 1g (h)

w, wŒ, see (4.30), and observe that k ([ h)=k ([ h − 1)+k (h).
Let us define

hg=inf{h: 0 \ h \ hM, a0c h̄ − 1 \ 4 |mh̄ |, -h̄: 0 \ h̄ \ h}. (4.46)

Of course this definition is meaningful only for m0 such that |m0 | [
a0
4c

.
The integration of the scales from hg to hM will be performed ‘‘in a

single step.’’ This follows from the following result

4.5. Lemma. Assume that hg is finite uniformly in M, so that
|mhg − 1c−hg

| \ ō, for a suitable constant ō and define

ḡ ([ hg)
w, wŒ (x − y)

Zhg − 1
— F PZhg − 1, mhg − 1, Chg (dk ([ hg)) k ([ hg) −

x, w k ([ hg)+
y, wŒ . (4.47)

Then, given the positive integers N, n0, n1 and putting n=n0+n1, there
exist a constant CN, n such that

|“n0
x0

“
n1
x g ([ hg)

w, wŒ (x; y)| [ CN, n
chg+n

1+(chg
|d(x − y)|)N

. (4.48)

4.6. Remark. Let us now explain the main motivations of the inte-
gration procedure discussed above. In a Renormalization Group frame-
work one has to identify the relevant, marginal and irrelevant effective
interactions. By a power counting argument one sees that the terms bilinear
in the fields are relevant, and the terms quartic in the fields or quadratic
with a derivated (in the x space) field are marginal. As it was shown in
Section 4.3, there is only one kind of relevant term, and this is a rather
crucial point. The Renormalization Group flow of the relevant terms can
be controlled by the introduction of a counterterm; as we have at our dis-
posal only one counterterm, it is important to have only one kind of rele-
vant effective interactions. The unique relevant effective interaction has the
form k+

x, 1 k−
x, −1 − k+

x, −1 k−
x, 1, which can be interpreted as a mass term in a

fermionic quantum field theory like the Thirring model. There is however
an important difference: in fermionic models coming from QFT if there is
no mass term in the formal free action then no mass terms are generated by
Renormalization Group iterations, in absence of spontaneous symmetry
breaking; the reason is that such models are invariant under the local gauge
transformation k e

x, w Q e ieaw k e
x, w if there is no mass term in the formal free

action. In our model this is not true, as the interaction is not invariant
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under this symmetry; hence even if t=tc (or m1=0) a mass term can be
generated in the RG iterations. Hence we collect all the relevant terms
which are vanishing if mk=0, 1 \ k \ h+1, in sh, which we include in the
fermionic free integration; the ‘‘mass’’ has a non trivial flow producing at
the end the critical index of the correlation length. The remaining terms are
left in the effective interaction; they are constituting the running coupling
constant nh (in a gauge invariant theory nh=0) whose flow is controlled by
a suitable choice of the counterterm n; the running coupling constant nh

takes into account the renormalization of the critical temperature. The
running coupling constant vh are dimensionally marginal; again the
z̃i, w, h, zi, w, h correspond to effective interactions which are absent from the
free action, but which could be possibly generated by the RG iterations,
and they would be absent in a QFT fermionic model. Finally, due to the
mass gap, the propagator of the integration of all the scales between hg and
hM has the same bound as the propagator of the integration of a single
scale greater than hg; this property is used to perform the integration of all
the scales [ hg in a single step.

4.7. Theorem 3. Let h > hg \ 0 and, for some constants c1, if

max
k \ h

[|vk |+|nk |] [ eh, sup
hŒ > h

: mhŒ

mhŒ − 1

: [ ec1eh, sup
hŒ > h

: ZhŒ

ZhŒ − 1

: [ ec1e
2
h (4.49)

there exists a constant ē (depending on c1) such that, if eh [ ē, then, for a
suitable constant c0, independent of c1, as well as of M, the kernels in
(4.11) verify

C
g

x1,..., x2n

|W(h)
n (x1,..., x2n)| [ M2c−hDk(Pv0

)(c0eh)max(1, n − 1) (4.50)

where

Dk(Pv0
)=−2+n+k. (4.51)

and k=;2n
i=1 ai.

4.8. Proof. We write V (h) in terms of a tree expansion, similar to
that described, for example, in ref. 18 (see Fig. 7).

We need some definitions and notations.

(1) Let us consider the family of all trees which can be constructed
by joining a point r, the root, with an ordered set of n \ 1 points, the

Non-Universality in Ising Models with Four Spin Interaction 241



Fig. 7. A tree with its scale labels.

endpoints of the unlabeled tree, so that r is not a branching point. n will be
called the order of the unlabeled tree and the branching points will be
called the non trivial vertices. The unlabeled trees are partially ordered from
the root to the endpoints in the natural way; we shall use the symbol < to
denote the partial order. Two unlabeled trees are identified if they can be
superposed by a suitable continuous deformation, so that the endpoints
with the same index coincide. It is then easy to see that the number of
unlabeled trees with n end-points is bounded by 4n. We shall consider also
the labeled trees (to be called simply trees in the following); they are defined
by associating some labels with the unlabeled trees, as explained in the
following items.

(2) We associate a label h [ 0 with the root and we denote Th, n the
corresponding set of labeled trees with n endpoints. Moreover, we intro-
duce a family of vertical lines, labeled by an an integer taking values in
[h, 2], and we represent any tree y ¥ Th, n so that, if v is an endpoint or a
non trivial vertex, it is contained in a vertical line with index hv > h, to be
called the scale of v, while the root is on the line with index h. There is the
constraint that, if v is an endpoint, hv > h+1; if there is only one end-point
its scale must be equal to h+2, for h [ 0.

The tree will intersect in general the vertical lines in set of points dif-
ferent from the root, the endpoints and the non trivial vertices; these points
will be called trivial vertices. The set of the vertices of y will be the union of
the endpoints, the trivial vertices and the non trivial vertices. Note that, if
v1 and v2 are two vertices and v1 < v2, then hv1

< hv2
.

Moreover, there is only one vertex immediately following the root,
which will be denoted v0 and can not be an endpoint; its scale is h+1.

(3) With each endpoint v of scale hv=+2 we associate one of the
contributions to V (1) given by (3.9); with each endpoint v of scale hv [ 1
one of the terms in LV (hv − 1) defined in (4.41). Moreover, we impose the
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constraint that, if v is an endpoint and hv [ 1, hv=hvŒ+1, if vŒ is the non
trivial vertex immediately preceding v.

(4) If v is not an endpoint, the cluster Lv with frequency hv is the set
of endpoints following the vertex v; if v is an endpoint, it is itself a (trivial)
cluster. The tree provides an organization of endpoints into a hierarchy of
clusters.

(5) We introduce a field label f to distinguish the field variables
appearing in the terms associated with the endpoints as in item 3; the set of
field labels associated with the endpoint v will be called Iv. Analogously, if
v is not an endpoint, we shall call Iv the set of field labels associated with
the endpoints following the vertex v; x(f), e(f) and w(f) will denote the
space-time point, the e index and the w index, respectively, of the field
variable with label f.

If h [ 0, the effective potential can be written in the following way:

V (h)(`Zh k ([ h))+M2Ẽh+1= C
.

n=1
C

y ¥ Th, n

V(h)(y, `Zh k ([ h)), (4.52)

where, if v0 is the first vertex of y and y1,..., ys (s=sv0
) are the subtrees of y

with root v0, V (h)(y, `Zh k ([ h)) is defined inductively by the relation

V (h)(y, `Zh k ([ h))

=
(−1) s+1

s!
ET

h+1[V̄ (h+1)(y1, `Zh k ([ h+1));...; V̄ (h+1)(ys, `Zh k ([ h+1))],
(4.53)

and V̄ (h+1)(yi, `Zh k ([ h+1))

(a) is equal to RV (h+1)(yi, `Zh k ([ h+1)) if the subtree yi is not
trivial;

(b) if yi is trivial and h [ − 1, it is equal to one of the terms in
LV (h+1)(`Zh k ([ h+1)) or, if h=0, to one of the terms contributing to
V (1)(k [ 1) (3.9).

In (4.53) ET
h+1 denotes the truncated expectation with respect to the

measure <w P(dk (h+1)
w ). The r.h.s. of (4.53) can be written more explicitly

in the following way. Given y ¥ T0, n, there are n endpoints of scale 2 and
only another one vertex, v0, of scale 1; let us call v1,..., vn the endpoints. We
choose, in any set Ivi

, a subset Qvi
and we define Pv0

=1i Qvi
. We have
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V (0)(y, k ([ 0))=C
Pv0

V (0)(y, Pv0
), (4.54)

V (0)(y, Pv0
)=F dxv0

k̃ [ 0(Pv0
) K (1)

y, Pv0
(xv0

), (4.55)

K (1)
y, Pv0

(xv0
)=

1
n!

ET
1 [k̃ (1)(Pv1

0Qv1
),..., k̃ (1)(Pvn

0Qvn
)] D

n

i=1
K (2)

vi
(xvi

),
(4.56)

where we use the definitions k̃ ([ h)(Pv)=<f ¥ Pv
“

m(f)k ([ h) e(f)
x(f), w(f), and K (2)

vi
(xvi

)
are the kernels in (3.9). We now write V (0) as LV (0)+RV (0), with LV (0)

defined as in (4.21), and we write for RV (0) a decomposition similar to the
previous one, with RV (0)(y, Pv0

) in place of V (0)(y, Pv0
). By iterating the

previous procedure, one gets for V (h)(y, k ([ h)), for any y ¥ Th, n, the repre-
sentation described below (see refs. 11 and 18 for details).

We associate with any vertex v of the tree a subset Pv of Iv, the external
fields of v. These subsets must satisfy various constraints. First of all, if v is
not an endpoint and v1,..., vsv

are the vertices immediately following it, then
Pv … 1i Pvi

; if v is an endpoint, Pv=Iv. We shall denote Qvi
the intersection

of Pv and Pvi
; this definition implies that Pv=1i Qvi

. The subsets Pvi
0Qvi

,
whose union Iv will be made, by definition, of the internal fields of v, have
to be non empty, if sv > 1. Given y ¥ Th, n, there are many possible choices
of the subsets Pv, v ¥ y, compatible with all the constraints; we shall denote
Py the family of all these choices and P the elements of Py. We can write

V (h)(y, k ([ h))= C
P ¥ Py

V(h)(y, P). (4.57)

V (h)(y, P) can be represented as

V (h)(y, P)=`Zh
|Pv0

| F dxv0
k̃ ([ h)(Pv0

) K (h+1)
y, P (xv0

), (4.58)

with K (h+1)
y, P (xv0

) defined inductively (recall that hv0
=h+1) by the equation,

valid for any v ¥ y which is not an endpoint,

K (hv)
y, P (xv)=

1
sv!

1 Zhv

Zhv − 1

2
|Pv|

2
D
sv

i=1
[K (hv+1)

vi
(xvi

)]

×ET
hv

[k̃ (hv)(Pv1
0Qv1

),..., k̃ (hv)(Pvsv
0Qvsv

)], (4.59)
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Moreover, if v is an endpoint, K (2)
v (xv) is defined as in (3.9) if hv=2,

otherwise

K (hv)
v (xv)=˛lhv − 1d(x1 − x2) d(x2 − x3) d(x3 − x4) if v is of type l,

chv − 1nhv − 1d(x − y) if v is of type n,

dhv − 1d(x − y) if v is of type d,

zhv − 1, w, id(x − y), z̃hv − 1, w, id(x − y) if v is of type z, z̃
(4.60)

If vi is not an endpoint,

K (hv+1)
vi

(xvi
)=RK (hv+1)

yi, P(i) (xvi
), (4.61)

where yi is the subtree of y starting from v and passing through vi (hence
with root the vertex immediately preceding v), P (i) are the restrictions to yi

of P.
(4.57) is not the final form of our expansion, since we further decom-

pose V (h)(y, P), by using the representation of the truncated expectation
(3.21). If we apply the expansion (3.21) in each non trivial vertex of y, we
get an expression of the form

V (h)(y, P)=`Zh
|Pv0

| C
T ¥ T

F dxv0
k̃ ([ h)(Pv0

) W (h)
y, P, T(xv0

), (4.62)

where T is a special family of graphs on the set of points xv0
, obtained by

putting together an anchored tree graph Tv for each non trivial vertex v.
Note that any graph T ¥ T becomes a tree graph on xv0

, if one identifies all
the points in the sets xv, for any vertex v which is also an endpoint.

Taking into account the effect of the R operation we obtain (see
Section 3 of ref. 18 for a detailed proof of a similar formula)

Wy, P, T(xv0
)= C

a ¥ AT

5D
n

i=1
Khi

vg
i

63 D
v

not e.p.

1
sv!

F dPTv
(tv) det Ghv, Tv

a (tv)

×5 D
v

not e.p.

1 Zhv

Zhv − 1

2
|Pv|

2 6

×5D
l ¥ Tv

“
qa(f −

l )
“

qa(f+
l )[(xl − yl)ba(l)

“
mlg̃ (hv)

w −
l , w

+
l

(xl − yl)]64 ,

(4.63)
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where ‘‘e.p.’’ is an abbreviation of ‘‘endpoint’’ and, together with the defi-
nitions used before, we are using the following ones:

(1) AT is a set of indices which allows to distinguish the different
terms produced by the non trivial R operations and the iterative decompo-
sition of the zeros;

(2) vg
1 ,..., vg

n are the endpoints of y and hi=hvg
i
;

(3) ba(l), qa(f−
l ) and qa(f+

l ) are positive integers [ 3; “̂
0=I;

(4) if v is a non trivial vertex (so that sv > 1),the elements Ghv, Tv
a, ij, iŒjŒ of

Ghv, Tv
a (tv) are of the form

Ghv, Tv
a, ij, iŒjŒ=ti, iŒ “̂

qa(f −
ij )

“̂
qa(f+

iŒjŒ)“
m(f −

l )
“

m(f −
l )g̃ (hv)

w
−, w

+(xij − yiŒjŒ); (4.64)

if v is trivial, Tv is empty and > dPTv
(tv) det Ghv, Tv

a (tv) has to be interpreted
as 1, if |Iv |=0 (Iv is the set of internal fields of v), otherwise it is the
determinant of a matrix of the form (4.64) with ti, iŒ=1.

It would be very difficult to give a precise description of the various
contributions to the sum over AT, but fortunately we only need to know
some very general properties, in particular that |AT | [ Cn for some constant
C and that for any a ¥ AT, the following inequality is satisfied

5 D
f ¥ Iv0

cha(f) qa(f)65D
l ¥ T

c−ha(l) ba(l)6 [ D
v not e.p.

c−z(Pv), (4.65)

where ha(f)=hv0
− 1 if f ¥ Pv0

, otherwise it is the scale of the vertex where
the field with label f is contracted; ha(l)=hv, if l ¥ Tv and

z(Pv)=˛1 if |Pv |=4,

2 if |Pv |=2,

0 otherwise.

(4.66)

By a standard computation (see, for instance, Section 3 of ref. 18) by
bounding the determinant by the Gram–Hadamard inequality (see (3.23))
we obtain

F dxv0
|Wy, P, T(xv0

)| [ CnM2en
hc−hDk(Pv0

)

· D
v not e.p.

3 1
sv!

C;
sv
i=1 |Pvi

| − |Pv| 1 Zhv

Zhv − 1

2
|Pv|

2
c−[ − 2+

|Pv|

2 +z(Pv)]4 ,

(4.67)
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with − 2+|Pv|
2 +z(Pv) > 0. In order to perform the sums note that the

number of unlabeled trees is [ 4n; fixed an unlabeled tree, the number of
terms in the sum over the various labels of the tree is bounded by Cn,
except the sums over the scale labels. In order to bound the sums over the
scale labels and P we first use the inequality

D
v not e.p.

c−[ − 2+
|Pv|

2
+z(Pv)] [ 5D

ṽ
c−2a(hṽ − hṽ Œ)65 D

v not e.p.
c−2a |Pv|6 , (4.68)

where ṽ are the non trivial vertices, and ṽ Œ is the non trivial vertex immedi-
ately preceding ṽ or the root. The factors c−2a(hṽ − hṽ Œ) in the r.h.s. of (4.68)
allow to bound the sums over the scale labels by Cn; a is a suitable constant
(one finds a= 1

40).
Finally the sum over P can be bounded by using the following com-

binatorial inequality, trivial for c large enough. Let {pv, v ¥ y} a set of
integers such that pv [ ; sv

i=1 pvi
for all v ¥ y which are not endpoints; then

D
v not e.p.

C
pv

c−
pv
40 [ Cn. (4.69)

It follows that

C
P

|Pv0
|=2m

D
v not e.p.

c−
|Pv|

40 [ D
v not e.p.

C
pv

c−
pv
40 [ Cn. (4.70)

4.9. Remark 1. The decomposition in (4.23) respects the determi-
nant structure of the truncated expectations, as we can decompose the
propagators as in (4.34), (4.38), obtaining, for any tree with n end-points,
a family of Cn different contributions to Ŵ (h)

2 , which can be bounded as
before. Hence we can include in Ŵ (a) the terms with at least a propagator
ĝ (k)

w, −w, defined in (4.39).

Remark 2. If the tree y has an end-point on scale k, the bound
(4.50) can be improved by a factor ca(h − k), as it follows immediately from
(4.68). In particular if to an end-point is associated a term RV (1) there is an
extra factor cah; this is a short memory property.

4.10. The above results were proved for Z−, −, −, −
2I ; a similar analysis

can be repeated for Z e
(1), eŒ(1), e

(2), eŒ(2)

2I , for any value of e (1), e −(1), e (2), e −(2). The
only difference is that one has in addition the function Q̃e in the interaction
and the oscillating functions e ipM x. One can split V1 in a part identical to
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the one for Z−, −, −, − , called V̄ (1), and the rest; hence we repeat the multi-
scale analysis by writing V (h)=V̄ (h)+V −(h), with V −(h) given by a sum of
trees with at least an end-point associated to V (1) −V̄ (1); we define the
localization operators acting non trivially only on V̄ (h) (and defined as
above). It is easy to see that the terms from trees with at least one end-
point associated to V (1) −V̄(1) are vanishing in the limit M Q .; in fact the
bounds for such terms is improved by the factor c

− hg

M , by simply dimen-
sional considerations, and we will see in the following section that c−hg

is a
finite number independent from M, hence such terms are vanishing in the
limit M Q ..

5. THE FLOW OF THE RUNNING COUPLING CONSTANTS

5.1. By the analysis of the preceding section it follows that the
running coupling constants vk, nk, mk, 1 \ k \ hg, verify a set of recursive
equations called Beta function equations, of the form

nh − 1=cnh+bh
n (vh, nh;...; v1, n1)

vh − 1=vh+bh
v (vh, nh;...; v1, n1)

mh − 1

mh
=1+bh

m(vh, nh;...; v1, n1)

Zh − 1

Zh
=1+bh

z (vh, nh;...; v1, n1)

(5.1)

By repeating the analysis for proving Theorem 3 to the functions bh
i we

have that, if (4.49) holds, then the bh
i are expressed by convergent series.

We want to show that there exists a positive constant a3 such that, if
|t − tc | \ e− 1

a3l2, it is possible to find a function n1 (hence a function n) so that
(4.49) holds (if l is small enough). Iterating the first of (5.1) we find

nh=c−h+1 5n1+ C
1

k=h+1
ck − 2bk

n (nk,..., n0)6 , (5.2)

where now the functions bk
n are thought as functions of nk,..., n1 only.

If we put h=hg in (5.2), we get the following identity:

nhg=c−hg+1 5n1+ C
1

k=hg+1

ck − 2bk
n (nk,..., n0)6 , (5.3)
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and we look for a n1 verifying

n1=− C
1

k=hg+1

ck − 2bk
n (nk,..., n1). (5.4)

so that

nh=−c−h C
h

k=hg+1

ck − 1bk
n (nk,..., n1), hg < h [ 1. (5.5)

Let be ñ — {ñk, hg [ h [ 1} and ||ñ||=suphg
[ h [ 1 |ñh |; we call M the set

of ñ with bounded norm. We decouple the beta function equations (5.1)
imagining that in the last three equations of (5.1) nk is replaced by ñk acting
as a parameter; we call mh(ñ), vk(ñ) the solution of the second and third of
(5.1) as functions of the parameter ñ. We shall prove the following lemma.

5.2. Lemma. There exists e and a3 such that, for |t − tc | \ e
− 1

a3l2
1,

|l| [ e and any ñ such that ||ñ||, ||ñŒ|| [ Cn |l|, it holds, if m0=|t − tc | and
C, Cn are constants

|lh(ñ) − l1 | [
|l1 |
4

|lh(ñ) − lh(ñŒ)| [ C |l| max
k > h

|ñk − ñ −

k |

|dh(ñ)| [
|l1 |
4

|dh(ñ) − dh(ñŒ)| [ C |l| max
k > h

|ñk − ñ −

k |

|z̃i, w, h(ñ)| [ |z̃0, w, h |+|l| |z̃i, w, h(ñ) − z̃i, w, h(ñŒ)| [ C |l| max
k > h

|ñk − ñ −

k |

|zi, w, h(ñ)| [ |z0, w, h |+|l| |zi, w, h(ñ) − zi, w, h(ñŒ)| [ C |l| max
k > h

|ñk − ñ −

k |

|m0 | cc1a2l1h [ |mh(ñ)| [ |m0 | cc2a2l1h : mh(ñ)
mh(ñŒ)

− 1 : [ max
k > h

|ñk − ñ −

k | |l|−1

c−c3a4l
2
1h [ |Zh(ñ)| [ c−c4a4l

2
1h :Zh − 1(ñ)

Zh(ñ)
−

Zh − 1(ñŒ)
Zh(ñŒ)

: [ max
j > h

|ñk − ñ −

k |
(5.6)

with a2, a4, c1, c2, c3, c4 positive constants.

Remark. An obvious corollary of the above statement is that there
exits a finite (uniformly in M) hg such that mhg − 1chg − 1 \ o for a suitable
constant o.
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5.3. Proof. The proof is done by induction. By iterating the second
equation of (5.1) we find

lh − 1(ñ) − l1= C
1

k=h
bk

l(vh(ñ), ñh;...; v1(ñ), ñ1) (5.7)

and by induction

|bk
l(vh(ñ), ñh;...; v1(ñ), ñ1)| [ C1

5|l1 |3+l2
1

|mh |
ch +l2

1cah6 . (5.8)

The first addend of the r.h.s. of (5.8) is a bound on the terms containing
only propagators g (h)

L, w(x − y), see (4.35), and trees with end-points v with
hv [ 1, and the bound follows from the fact that the second order terms
cancels out. The second addend is a bound on the terms containing at least
a propagator ĝ (h)

w1, w2
(x − y) (4.39), (4.37) (the bound follows from the short

memory property and (4.33), (4.37)). The third addend is a bound on the
sum of terms with at least a propagator g̃ (h)

w1, w2
(x − y) or from trees with at

least an end-point v with hv=2, and we have used (4.36).
Inserting (5.8) in (5.7) we get

|lh − 1(ñ) − l1 | [ C1
5|h| |l1 |3+l2

1 C
0

k=h

5|mk |
ck +cak66 [

|l1 |
4

(5.9)

for a3 large enough and l small enough, where we have used that ;0
k=h

|mk|

ck

is bounded (by induction and the definition of hg).
Moreover the expansion for lh − 1(ñ) − lh − 1(ñŒ) is given by a sum of

terms similar to the ones for lh − 1(ñ) in which a vk is replaced by
vk(ñ) − vk(ñŒ) bounded by Cl2 maxj > k |ñj − ñ −

j | or mk or Zk replaced by the
relative difference; one finds, for a3 large and l small enough

|lh − 1(ñ) − lh − 1(ñŒ)| [ C2
5|h| |l|3+|l| C

0

k=h

5|mk |
ck +cak66 max

k > h
|ñk − ñ −

k |

[ C |l| max
k > h

|ñk − ñ −

k |, (5.10)

where the first term is a bound on the terms containing only propagators
g (h)

L, w(x − y), and trees with end-points v with hv [ 1, containing at least
a vk(ñ) − vk(ñŒ) or a ñk − ñ −

k (note also that the first term with end-point n

is l2
hn2

h). A similar analysis can be repeated for dh.
The recursive equation for z̃i, w, h is

z̃i, w, h − 1(ñ)=z̃i, w, h(ñ)+z̃i, w, h(l2
haz̃+bz)+R(h)

z̃ (5.11)
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with |bh
z | [ C3 |l|3 and |Rh

z̃ | [ C4[cah+|mh|

ch ] l2. In l2
h(a2+bz) in (5.11) are the

contributions from terms with only diagonal propagators g (h)
L, w(x) and from

trees with endpoints v with hv [ 1; there is necessarily at least a vertex z̃. In
fact assume that a contribution has nl end-points of type l and n end-
points of type n; there are then nl − 1

2+
n
2 propagators w=1 and nl − 1

2+
n
2

propagators w=−1, so that n must be odd; the total number of propaga-
tors 2nl − 1+n is an even number; the derivated integrand is odd under the
exchange k Q − k and so it is vanishing. Moreover there is no contribution
of order lh z̃h (they corresponds to tadpole graphs , whose derivative is
zero). In R (h)

z̃ are the trees with at least an end point v with hv=2, or with a
propagator ĝ (k)

w1, w2
, or with a propagator g̃ (k)

w1, w2
. It holds by iterating, for a3

large and l small enough, |z̃i, w, h | [ |z̃i, w, 0 |+|l|. Moreover

|z̃i, w, h − 1(ñ) − z̃i, w, h − 1(ñŒ)| [ C3 max
j > h

|ñk − ñ −

k | 5|l|3 |h|+|l| C
0

k=h

5|mk |
ck +cak66

[ C |l| max
j > h

|ñk − ñ −

k | (5.12)

Similar computations can be repeated for zi, w, h.
By definition (see (4.23)) mh − 1(ñ) is given by a sum over terms with at

least a non diagonal propagator ĝ (h)
w, −w(x − y), hence

mh − 1(ñ)
mh(ñ)

=1+lh(−a2+hm) (5.13)

where a2 > 0 is a constant and |hm | [ C |l1 |; then (assuming l1 > 0; similar
computations can be repeated for l1 < 0), for l small enough

11 −
5
4

a2l1
2 [

|mh − 1(ñ)|
|mh(ñ)|

[ 11 −
3
4

a2l1
2 (5.14)

Then

|mh − 1(ñ)| \ |m0 | c2a2l1(h − 1)
(1 − 5

4 a2l1)
c−2a2l1

\ |m0 | c2a2l1(h − 1) (5.15)

and

|mh − 1(ñ)| [ |m0 | c
a2
2

l1(h − 1)
(1 − 3

4 a2l1)

c−l1
a2
2

[ |m0 | c
a2
2

l1(h − 1) (5.16)
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Finally, for a3 large enough

: mh − 1(ñ)
mh − 1(ñŒ)

− 1:=:<1
k=h (1+bk

m(ñ)) − <1
k=h (1+bk

m(ñŒ))
<1

k=h (1+bk
m(ñŒ))

:

[ C4 log b max
0 [ k [ h

|vk(ṽ) − vk(ṽ Œ)|

[ max
j > h

|ñk − ñ −

k | |l|−1 (5.17)

Finally the last of (5.6) are found in a similar way, noting that
Zh − 1(ñ)

Zh(ñ) =1+l2
h(a4+hs), with |hs | [ C|l1 |.

5.4. Lemma. There exists e, a3 and Cn such that, for |t − tc | \ e
− 1

a3l2

and |l| [ e, there exists a n1(l) so that maxk \ hg |nk | [ Cn |l|.

Proof. It is sufficient to look for a fixed point for the operator
T: M Q M, and T is defined in the following way, if ñŒ=T(ñ), see (5.5):

ñ −

h=−c−h C
h

k=hg+1

ck − 1bn
k(vk(ñ), ñk,..., n0(ñ), ñ0), hg < h [ 1. (5.18)

We want to prove that it is possible to choose the constant Cn \ 1 in
Lemma 5.2 so that, if |l| is small enough, the set F={ñ ¥ M: ||ñ|| [ Cn |l|}
is invariant under T and T is a contraction on it. This is sufficient to prove
the lemma, since M is a Banach space, as one can easily show.

By (5.18) and Theorem 3

|ñ −

h | [ C
h

j=hg+1

c−h+j − 1 5C1, n |l|+ C
.

n=2
cn |l|n6 , (5.19)

where C1, n is a constant depending on the first order contribution (i.e., the
tadpole). So, for a proper Cn, ||ñŒ|| [ Cn |l|.

We then show that T is a contraction on F. In fact, given ñ1, ñ2 ¥ F,
by using Theorem 3 and Lemma (5.2), we see that, for l small enough

ñ −

1, h − ñ −

2, h=−c−h C
h

k=hg+1

ck − 1 [bn
k(vk(ñ1), ñk, 1,..., v1(ñ1), ñ1, 1)

− bn
k(vk(ñ2), ñk, 2,..., v1(ñ2), ñ1, 2)] (5.20)
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and

|ñ −

1, h − ñ −

2, h | [ C1 |l| 5c−h C
h

k=hg+1

ck − 16 5 C
j \ h

ca(h − j) max
i \ j

|ñ1, i − ñ2, i |6

[ C2 |l| ||ñ1 − ñ2 ||

with C1, C2 constants, so that T is a contraction.

5.5. If a=b=0 one has the case treated in ref. 19, corresponding to
two independent Ising models with a quartic or a next to nearest neighbor
interaction. In such a case the local part of the quartic terms is vanishing
by Pauli principle, so that if |Pv |=4 one can apply ‘‘freely’’ a first order
renormalization obtaining an additional c−(hv − hvŒ), for any v such that
|Pv |=4, in the bounds. At each step one can include all the quadratic
running coupling constants in the free integrations; their beta function is
z̃i, h − 1=z̃i, h+O(cahl) and zi, h − 1=zi, h+O(cahl), as the beta function is sum
over all the trees with end-points necessarily at scale hv=2 (contrary to our
case, as the local part of the quartic terms is vanishing, and there are no
end-points associated to the quadratic terms as they are included in the free
integration). Hence all the quadratic couplings are O(l) and they do not
change the scaling properties of the propagator on a single scale; the quali-
tative behaviour of Cv for l=0 or l ] 0 are then the same for temperatures
up to tc.

6. CORRELATION FUNCTIONS

6.1. Flow of Observables

We consider the following functional integral

eS(f)=F P(dk) eV
(1)(k)+B(f, k) (6.1)

where V (1) given by (3.8) and B=B1+B2 with

B (1)(k, f)=F dx f (1)(x)[k+
x, 1 k−

x, −1+k−
x, 1 k+

x, −1] (6.2)

B (2)(k, f)=F dx f (2)(x)[k+
x, 1 k+

x, −1+k−
x, 1 k−

x, −1]. (6.3)
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After integrating the fields k (1),..., k (h+1), 0 \ h \ hg, we find

eS(f)=e−LbEh+S(h+1)(f) F PZh, mh, Ch
(dk [ h)

× e−V
(h)(`Zh k

([ h))+B
(h)(`Zh k

([ h), f), (6.4)

where PZh, mh, Ch
(dk ([ h)) and Vh are given by (4.8) and (4.11), respectively,

while S (h+1) (f), which denotes the sum over all the terms dependent on f

but independent of the k field, and B (h)(k ([ h), f), which denotes the sum
over all the terms containing at least one f field and two k fields, can be
represented in the form

S (h+1)(f)= C
.

m=1
F dx1 · · · dxm S (h+1)

m (x1,..., xm)5D
m

i=1
f (ai)(xi)6 (6.5)

B (h)(k ([ h), f)= C
.

m=1
C
.

n=1
C
s
¯

, w
¯

F dx1 · · · dxm dy1 · · · dy2n

· B (h)
m, 2n, s

¯
, w

¯
(x1,..., xm; y1,..., y2n)5D

m

i=1
f (ai)(xi)65D

2n

i=1
k ([ h) si

yi, wi
6 .

(6.6)

Since the field f is equivalent, from the point of view of dimensional
considerations, to two k fields, the only terms in the r.h.s. of (6.6) which
are not irrelevant are those with m=1 and n=1, which are marginal. The
localization L is defined equal to zero except in the following cases

L F dx dy dz Wh
1, 2(x; y, z) f (1)(x) ks

y, 1 ks
z, −1

=F dx dy dz Wh
1, 2(x; y, z) f (1)(x) ks

x, 1 ks
x, −1 ,

L F dx dy dz Wh
1, 2(x; y, z) f (2)(x) ks

y, 1 k−s
z, −1

=F dx dy dz Wh
1, 2(x; y, z) f (2)(x) ks

x, 1 k−s
x, −1 .

(6.7)

Hence

LB (h)(k ([ h), f)=
Z (1)

h

Zh
F ([ h)

1 +
Z (2)

h

Zh
F ([ h)

2 , (6.8)
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where Z (1)
h and Z (2)

h are real numbers, such that Z (1)
1 =Z(2)

1 =1 and

F ([ h)
1 =F dx f (1)(x)[k ([ h)+

x, 1 k ([ h) −
x, −1 +k ([ h) −

x, 1 k ([ h)+
x, −1 ], (6.9)

F ([ h)
2 =F dx f (2)(x)[k ([ h)+

x, 1 k ([ h)+
x, −1 +k ([ h) −

x, 1 k ([ h) −
x, −1 ]. (6.10)

By using the notation of the preceding sections

e−M2th F PZ̃h − 1, mh − 1, Ch
(dk ([ h)) e−Ṽ

(h)(`Zh k
([ h))+B

(h)(`Zh k
([ h), f)

=e−M2th F PZh − 1, mh − 1, Ch − 1
(dk ([ h − 1))

· F PZh − 1, mh − 1, f̃ − 1
h

(dk (h)) e−V̂
(h)(`Zh − 1 k

([ h))+B
(h)(`Zh − 1 k

([ h), f), (6.11)

where B (h − 1)(k ([ h − 1), f) and S (h)(f) are then defined by

e−V
(h − 1)(`Zh − 1 k

([ h − 1))+B
(h − 1)(`Zh − 1 k

([ h − 1), f) − LbẼh+S̃(h)(f)

=F PZh − 1, mh − 1, f̃ − 1
h

(dk (h)) e−V̂
(h)(`Zh − 1 k

([ h))+B̂
(h)(`Zh − 1 k

([ h), f). (6.12)

The definitions (6.8) easily imply that

Z (1)
h − 1

Zh − 1
=

Z (1)
h

Zh
[1+a1lh+h1]

Z (2)
h − 1

Zh − 1
=

Z (2)
h

Zh
[1 − a1lh+h2] (6.13)

with |hi | [ Cl2, i=1, 2; proceeding as in the proof of Lemma 5.2

c−l1c4h <
Z (1)

h

Zh
< c−l1c3h cl1c1h <

Z (2)
h

Zh
< cl1c2h. (6.14)

The fields of scale between hg and hL, b are integrated in a single step,
and it follows that

S(f)=−LbEL, b+S(h)(f)=−LbEL, b+ C
1

h=hg
S̃ (h)(f); (6.15)
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As a f fields is dimensionally analogous to two external fields, we get,
proceeding as in the proof of Theorem 3 (see also Section 5 of ref. 18 for a
detailed proof of similar bounds in a related case)

: “
2

“f (1)(x) “f (1)(y)
S̃ (h)(f)>

f=0
[ c2h 5Z (1)

h

Zh

62 CN

1+(ch |d(x − y)|)N (6.16)

: “
2

“f (2)(x) “f (2)(y)
S̃ (h)(f)>

f=0
[ c2h 5Z (2)

h

Zh

62 CN

1+(ch |d(x − y)|)N (6.17)

and if xa=x, y and fa=f1, f2

: “
3S̃ (h)(f)

“f (a1)(x1) “f (a2)(x2) “f (a3)(x3)
>

f=0

[ c−hc4h 5D
3

i=1

Z (ai)
h

Zh

6 CN

1+(ch |d(x − y)|)N (6.18)

: “
4S̃ (h)(f)

“f (a1)(x1) “f (a2)(x2) “f (a3)(x3) “fa4
(x4)

>
f=0

[ c−2hc6h 5D
4

i=1

Z (ai)
h

Zh

6 CN

1+(ch |d(x − y)|)N (6.19)

6.2. Correlation Functions

The correlation function Os (a)
x s (a)

xŒ s (a)
y s (a)

yŒ PT, where xŒ=(x+1, x0) or
(x, x0+1) is given by

Os (a)
x s (a)

xŒ s (a)
y s (a)

yŒ PT=
“

“J (a)
x, xŒ

“

“J (a)
y, yŒ

log Z2I({J (a)
x, xŒ})|{Jx, xŒ}={J} (6.20)

If O (a)(x)=s (a)
x, x0

s (a)
x+1, x0

each derivative produces a factor

sech2 JH̄a
xH (a)

x+1, x0
+tanh J+

“

“Jx; x+1, x0

V (6.21)

with V given by (2.25). We define, using (2.30),(2.25)

OO (a)(x) O (a)(y)PL; e
(1), eŒ(1), e

(2), eŒ(2)

=
> [<2

a=1 P
(a)
e

(a), eŒ(a)(dH (a), dV(a))] eVO (a)(x) O (a)(y)

> [<2
a=1 P (a)

e
(a), eŒ(a)(dH(a), dV(a))] eV

(6.22)
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Moreover we call

OO (a)(x) O (a)(y)PL, T; e
(1), eŒ(1), e

(2), eŒ(2)

=OO (a)(x) O (a)(y)PL; e
(1), eŒ(1), e

(2), eŒ(2)

−OO (a)(x)PL; e
(1), eŒ(1), e

(2), eŒ(2) OO (a)(x)PL; e
(1), eŒ(1), e

(2), eŒ(2) (6.23)

so that

OO (a)(x) O (a)(x)PL, T

= C
e

(1), eŒ(1)
(−1)de(1), eŒ

(1) C
e

(2), eŒ(2)
(−1)de(2), eŒ

(2)

×
Z e

(1), eŒ(1), e
(2), eŒ(2)

2I OO (a)(x) O (a)(y)PL, T; e
(1), eŒ(1), e

(2), eŒ(2)

;e
(1), eŒ(1) (−1)de(1), eŒ

(1) ;e
(2), eŒ(2) (−1)de(2), eŒ

(2)Z e
(1), eŒ(1), e

(2), eŒ(2)

2I

. (6.24)

Suppose that x and y are fixed to an M independent value; then

lim
M Q .

OO (a)(x) O (a)(y)PL, T; e
1, eŒ1, e

2, eŒ2 −OO (a)(x) O (a)(y)PL, T; − , −, −, − =0.
(6.25)

In fact, as explained in Section 4.10, the l.h.s. of (6.25) can be written as a
sum of trees, and in each of them there is a factor e ipe, eŒ

x − 1 or an end-point
associated to Q̃e

1, eŒ1, e
2, eŒ2. With respect to the previous bounds, simply

dimensional analysis says there is now an extra factor c
− hg

M in the bounds so
it is vanishing in the limit M Q ., if x, y and t − tc are fixed to an M-in-
dependent value. We can then simply study OO (a)(x) O (a)(y)PL, T; − , −, −, −

which is given by the Grassmann integral (6.22) with O (a) given by (6.21).
By performing the change of variables (2.31) and (2.59), we get a sum of
averages of monomials in the k and q fields; we integrate the q-fields, as
discussed in Section 3, and we obtain a sum of Grassmann integrals of
monomials in the k fields; remembering that

H̄a
xH (a)

x H̄a
yH (a)

y = 1
16 [k−

1, x k−
−1, x k+

1, y k+
−1, y+k−

1, y k−
−1, y k+

1, x k+
−1, x

+k−
1, x k+

−1, x k+
1, y k−

−1, y+k−
1, x k+

−1, x k−
1, y k+

−1, y

+k+
1, x k−

−1, x k−
1, y k+

−1, y+k+
1, x k−

−1, x k+
1, y k−

−1, y] (6.26)

we find the first two of (1.13) and (1.15) by (6.1), (6.13), (6.15) and (6.16),
(6.17). In W (a), c we include to contributions to the correlation function cor-
responding to monomials with six or more k fields, and from (6.18), (6.19)
the last of (1.13) follows.
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Finally the specific heat is obtained in a similar way, noting that we
have to sum over x − y, and this produces an extra c2h in the r.h.s. of (6.16),
(6.17), (6.18), (6.19).
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